0 [sesetsn]
000000 [swss
L |ocober3L201l

A SASL and GSS-API Mechanism for SAML
draft-ietf-kitten-sasl-samli-05.txt

Abstract

Security Assertion Markup Language (SAML) has found its usage on the Internet for Web
Single Sign-On. Simple Authentication and Security Layer (SASL) and the Generic Security
Service Application Program Interface (GSS-API) are application frameworks to generalize
authentication. This memo specifies a SASL mechanism and a GSS-API mechanism for SAML
2.0 that allows the integration of existing SAML Identity Providers with applications using
SASL and GSS-APL

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on May 3, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Terminology
1.2. Applicability
2. Applicability for non-HTTP Use Cases
3. SAML SASL Mechanism Specification
3.1. Initial Response
3.2. Authentication Request
3.3. Outcome and parameters
4. SAML GSS-API Mechanism Specification

4.1. GSS-API Principal Name Types for SAML

Channel Binding

Examples

6.1. XMPP

6.2. IMAP

7. Security Considerations
7.1. Man in the middle and Tunneling Attacks
7.2. Binding SAML subject identifiers to Authorization Identities
7.3. User Privacy

7.4. Collusion between RPs

8. IANA Considerations

9. References
9.1. Normative References
9.2. Informative References

Appendix A. Acknowledgments

Appendix B. Changes

& Authors' Addresses

5.
6.

N

TOC
1. Introduction

Security Assertion Markup Language (SAML) 2.0 [OASIS.saml-core-2.0-0s] is a modular
specification that provides various means for a user to be identified to a relying party (RP)
through the exchange of (typically signed) assertions issued by an identity provider (IdP). It
includes a number of protocols, protocol bindings [OASIS.saml-bindings-2.0-0s], and
interoperability profiles [OASIS.saml-profiles-2.0-0s] designed for different use cases.

Simple Authentication and Security Layer (SASL) [RFC4422] is a generalized mechanism
for identifying and authenticating a user and for optionally negotiating a security layer for
subsequent protocol interactions. SASL is used by application protocols like IMAP [RFC3501],
POP [RFC1939] and XMPP [RFC6120]. The effect is to make modular authentication, so that
newer authentication mechanisms can be added as needed. This memo specifies just such a
mechanism.

The Generic Security Service Application Program Interface (GSS-API) [RFC2743]
provides a framework for applications to support multiple authentication mechanisms
through a unified programming interface. This document defines a pure SASL mechanism for
SAML, but it conforms to the new bridge between SASL and the GSS-API called GS2
[RFC5801]. This means that this document defines both a SASL mechanism and a GSS-API
mechanism. We want to point out that the GSS-API interface is optional for SASL
implementers, and the GSS-API considerations can be avoided in environments that uses
SASL directly without GSS-API.

As currently envisioned, this mechanism is to allow the interworking between SASL and SAML
in order to assert identity and other attributes to relying parties. As such, while servers (as
relying parties) will advertise SASL mechanisms (including SAML), clients will select the SAML
SASL mechanism as their SASL mechanism of choice.

The SAML mechanism described in this memo aims to re-use the Web Browser SSO profile
defined in section 3.1 of [OASIS.saml-profiles-2.0-0s] to a maximum extent and therefore
does not establish a separate authentication, integrity and confidentiality mechanism. The
mechanisms assumes a security layer, such as Transport Layer Security (TLS [RFC5246]),
will continued to be used. This specification is appropriate for use when a browser is available.

Figure 1 describes the interworking between SAML and SASL: this document requires
enhancements to the Relying Party and to the Client (as the two SASL communication end
points) but no changes to the SAML Identity Provider are necessary. To accomplish this goal
some indirect messaging is tunneled within SASL, and some use of external methods is
made.

I
>| Relying |
/ | Party |
// | |
// R +
SAML/ // N

HTTPs // +--|--+

// | S| |

/ S | Al |

// A Ml |

// S | L| |

// L] | |

7/ [

</ +--|--+

------------ + v

| o e e a - - +
SAML | HTTPs | |
Identity |<--------------- >| Client |
Provider | | |
------------ + foccoocoooodf

Figure 1: Interworking Architecture

. TOC
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC2119].
The reader is assumed to be familiar with the terms used in the SAML 2.0 specification.
TOC

1.2. Applicability

Applicability Because this mechanism transports information that should not be controlled by
an attacker, the SAML mechanism MUST only be used over channels protected by TLS, and
the client MUST successfully validate the server certificate, or similar integrity protected and
authenticated channels. [RFC5280][RFC6125]

TOC

2. Applicability for non-HTTP Use Cases

While SAML itself is merely a markup language, its common use case these days is with
HTTP [RFC2616] or HTTPs [RFC2818] and HTML [W3C.REC-htmI401-19991224]. What
follows is a typical flow:

1.
2.

The browser requests a resource of a Relying Party (RP) (via an HTTP request).
The RP sends an HTTP redirect as described in Section 10.3 of [RFC2616] to the
browser to the Identity Provider (IdP) or an IdP discovery service with an
authentication request that contains the name of resource being requested,
some sort of a cookie and a return URL [RFC3986],

. The user authenticates to the IdP and perhaps authorizes the authentication to

the service provider.

In its authentication response, the IdP redirects (via an HTTP redirect) the
browser back to the RP with an authentication assertion (stating that the IdP
vouches that the subject has successfully authenticated), optionally along with
some additional attributes.

. RP now has sufficient identity information to approve access to the resource or

not, and acts accordingly. The authentication is concluded.

When considering this flow in the context of SASL, we note that while the RP and the client
both must change their code to implement this SASL mechanism, the IdP must remain
untouched. The RP already has some sort of session (probably a TCP connection) established
with the client. However, it may be necessary to redirect a SASL client to another application

or handler

1.

2.
3.

. This will be discussed below. The steps are shown from below:

The Relying Party or SASL server advertises support for the SASL SAML20
mechanism to the client

The client initiates a SASL authentication with SAML20 and sends a domain

The Relying Party transmits an authentication request encoded using a Universal
Resource Identifier (URI) as described in RFC 3986 [RFC3986] and an HTTP
redirect to the IdP corresponding to the domain

. The SASL client now sends an empty response, as authentication continues via

the normal SAML flow.

. At this point the SASL client MUST construct a URL containing the content

received in the previous message from the RP. This URL is transmitted to the IdP
either by the SASL client application or an appropriate handler, such as a
browser.

Next the client authenticates to the IdP. The manner in which the end user is
authenticated to the IdP and any policies surrounding such authentication is out
of scope for SAML and hence for this draft. This step happens out of band from
SASL.

. The IdP will convey information about the success or failure of the authentication

back to the the RP in the form of an Authentication Statement or failure, using a
indirect response via the client browser or the handler (and with an external
browser client control should be passed back to the SASL client). This step
happens out of band from SASL.

. The SASL Server sends an appropriate SASL response to the client, along with

an optional list of attributes

Please note: What is described here is the case in which the client has not previously
authenticated. It is possible that the client already holds a valid SAML authentication token
so that the user does not need to be involved in the process anymore, but that would still be
external to SASL. This is classic Web Single Sign-On, in which the Web Browser client presents
the authentication token (cookie) to the RP without renewed user authentication at the IdP.

With all of this in mind, the flow appears as follows:

SASL Serv. Client Idp

|>----- (1)----- > | | Advertisement
I I I
|<----- (2)----- <| | Initiation
I I I
|>----- (3)----- >| | Authentication Request
I I I
|<----- (4)----- <| | Empty Response
I I I
| |[< - - - - - ->| Client<>IDP
| | | Authentication
I I I
|<- - - - - - - - - - - - - - -| Authentication Statement
I I I
|>----- (6)----- > | | SASL completion with
| | | status
I I I

----- = SASL

= HTTP or HTTPs (external to SASL)

Figure 2: Authentication flow

3. SAML SASL Mechanism Specification _—

This section specifies the details of the SAML SASL mechanism. Recall section 5 of
[RFC4422] for what needs to be described here.

The name of this mechanism "SAML20". The mechanism is capable of transferring an
authorization identity (via "gs2-header"). The mechanism does not offer a security layer.

The mechanism is client-first. The first mechanism message from the client to the serveris
the "initial-response" described below. As described in [RFC4422], if the application protocol
does not support sending a client-response together with the authentication request, the
server will send an empty server-challenge to let the client begin.

The second mechanism message is from the server to the client, the "authentication-
request" described below.

The third mechanism message is from client to the server, and is the fixed message
consisting of "=".

The fourth mechanism message is from the server to the client, indicating the SASL
mechanism outcome described below.

TOC
3.1. Initial Response

A client initiates a "SAML20" authentication with SASL by sending the GS2 header followed by
the authentication identifier. The GS2 header carries the optional authorization identity.

initial-response = gs2-header Idp-Identifier
IdP-Identifier = domain ; domain name with corresponding IdP

The "gs2-header" is specified in [RFC58011], and it is used as follows. The "gs2-nonstd-flag"
MUST NOT be present. Regarding the channel binding "gs2-cb-flag" field, see Section 5. The
"'gs2- authzid" carries the optional authorization identity. Domain name is specified in
[RFC1035].

TOC
3.2. Authentication Request

The SASL Server transmits a redirect URI to the IdP that corresponds to the domain the user
provided, with a SAML authentication request as one of the parameters. Note: The SASL
server may have a static mapping of domain to corresponding IdP or alternatively a DNS-
lookup mechanism could be envisioned, but that is out-of-scope for this document

authentication-request = URI

URI is specified in [RFC3986] and is encoded according to Section 3.4 (HTTP Redirect) of the
SAML bindings 2.0 specification [OASIS.saml-bindings-2.0-os]. The SAML authentication
request is encoded according to Section 3.4 (Authentication Request) of the SAML core 2.0
specification [OASIS.saml-core-2.0-0s].

The client now sends the authentication request via an HTTP GET to the IdP, as if redirected
to do so from an HTTP server and in accordance with the Web Browser SSO profile, described
in section 3.1 of [OASIS.saml-profiles-2.0-0s]

The client MUST handle both user authentication to the IdP and confirmation or rejection of
the authentiation of the RP.

After all authentication has been completed by the IdP, and after the response has been sent
to the client, the client will relay the response to the Relying Party via HTTP(S), as specified in
the authentication request ("AssertionConsumerServiceURL").

Please note: this means that the SASL server needs to implement a SAML Relying Party.
Also, the RP needs to correlate the TCP session from the SASL client with the SAML
authentication.

TOC
3.3. Outcome and parameters

The Relying Party now validates the response it received from the client via HTTP or HTTPS,
as specified in the SAML specification

The response by the Relying Party constitutes a SASL mechanism outcome, and SHALL be
used to set state in the server accordingly, and it shall be used by the server to report that
state to the SASL client as described in [RFC4422] Section 3.6.

4. SAML GSS-API Mechanism Specification o

This section and its sub-sections and all normative references of it not referenced elsewhere
in this document are INFORMATIONAL for SASL implementors, but they are NORMATIVE for
GSS-APl implementors.

The SAML SASL mechanism is actually also a GSS-API mechanism. The messages are the
same, but

a) the GS2 header on the client's first message and channel binding data is excluded when
SAML is used as a GSS-API mechanism, and

b) the RFC2743 section 3.1 initial context token header is prefixed to the client's first
authentication message (context token).

The GSS-API mechanism OID for SAML is OID-TBD (IANA to assign: see IANA considerations).

SAML20 security contexts always have the mutual_state flag (GSS_C_MUTUAL_FLAG) set to
TRUE. SAML does not support credential delegation, therefore SAML security contexts alway
have the deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on successfully comparing the
TLS server identity with the negotiated target name. Since the TLS channel is managed by
the application outside of the GSS-API mechanism, the mechanism itself is unable to confirm
the name while the application is able to perform this comparison for the mechanism. For
this reason, applications MUST match the TLS server identity with the target name, as
discussed in [RFC6125].

The SAML mechanism does not support per-message tokens or GSS_Pseudo_random.

4.1. GSS-API Principal Name Types for SAML _—

SAML supports standard generic name syntaxes for acceptors such as

GSS_C NT HOSTBASED_ SERVICE (see [RFC2743], Section 4.1). SAML supports only a
single name type for initiators: GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the

default name type for SAML. The query, display, and exported hame syntaxes for SAML

principal names are all the same. There are no SAML-specific name syntaxes -- applications
should use generic GSS-API name types such as GSS_C_NT USER NAME and

GSS_C _NT HOSTBASED_ SERVICE (see [RFC2743], Section 4). The exported name token
does, of course, conform to [RFC2743], Section 3.2.

5. Channel Binding TOC

The "gs2-cb-flag" MUST use "n" because channel binding data cannot be integrity protected
by the SAML negotiation.

Note: In theory channel binding data could be inserted in the SAML flow by the client and
verified by the server, but that is currently not supported in SAML.

6. Examples _—

6.1. XMPP e

Suppose the user has an identity at the SAML IdP saml.example.org and a Jabber Identifier
(JID) "somenode@example.com", and wishes to authenticate his XMPP connection to

xmpp.example.com. The authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'
to='example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream

xmlns="'jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
id='some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML20</mechanism>
</mechanisms>
</stream:features>

Step 4: Client selects an authentication mechanism and provides the initial client response
containing the BASE64 [RFC4648] encoded gs2-header and domain:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism="'SAML20'>
biwsZXhhbXBsZS5vcmc</auth>

The decoded string is: n,,example.org

Step 5: Server sends a BASE64 encoded challenge to client in the form of an HTTP Redirect
to the SAML IdP corresponding to example.org (https://saml.example.org) with the SAML
Authentication Request as specified in the redirection url:

aHROCHMBLY9ZzYW1sLmV4YW1wbGUub3JInLINBTUWvQnJIvd3N1lcjOTQUIMUMVX
dwVzdD1QSE50Y1d4d09rRjFKR2h1VWiWeGRXVnpkQOIOY1ld4dWN6CHpPZVZFz
YOQwaWRYSnVPbT1loYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWkOdO9uQnli
M1J2WTI5cO1nMEtJQOFNSUVSRVBTSMZZbVZqTKRIMFptRTFNVEF6TKRINEOU
QTVZVE13Wm1ZeFpUTXhNVFKOTXpJIM1pqYzVORGMWT1RNME1pQldaWEp6YVcS
dVBTSX1MakFpRFFvZO1DQWATWE56ZFdWSmJuTjBZVZzUWUFNJeU1EQTNMVEV5
TFRFd1ZERXhPak01T2pNMFdpSWdShT15WTIWQMRYUM9iajBpwmiGec2MyVW1E
UW9NSUNBZANYTL1FZWE56YVhabFBTSm1ZV3h6WINITKNpQWdJIQOJIRY205MGIyY
TnZiRUpwYm1ScGJItYz1Ib1lZ5Ympwd1l1lYTnBjenB1WVcxbGN6CDBZenBUUVUX
TU9qSXVNRHBpYVc1a2FXNW5jenBJIVKkZSUUXWQ1BVMVFpRFFvZO1DQWARWES6
W1hKMGFXOXVRMj11YzNWdFpYS1RaWEoyYVdObFZWSk1QUTBLSUNBZO1DQWdJ
QOFPYUhSMGNITTZMeTkOY1hCdOxtVjRZVzF3YkdVdVkyOXRMMUSCVFV3d1FY
TnpaWEowYVc5dVEYOXVjM1ZOWLhKVFpYSjIhVO5sSWoOTKNpQThjMkZOYKRw
SmMzTjFaWELlnZUcxc2JuTTZjMkZOYkQwawRYSnVPbT1loYzJsek9tNWwhiv1ize
T25Sak9sTkJUVXC2TWkOdO9tRNpjM1Z5ZEdsdmIpSStEUWINSUNBZO1HaDBk
SEJ6T2k4dmVHMXd]jQzVsZUdGdGNHeGxMbU52Y1EwSO1EA3ZjMkZOYKRwWSMMZ
TjFaWEKrRFFvZ1BITmhiV3h3T2s1aGJIXVkpSRkJ2YkdsamVTQjRiV3hiY3pw
e11XMXNjRDBpZFhKdU9tOWhjMmx6T201aGIXVnpPblIqT2x0Q1RVdzZNaTR3
T25CeWIZzUnZZMj1lzSWewS01DQWdJIQOJIHY jNKAF1YUT1Ib1Z5Ympwd1l1lYTnBj
enB1WVcxbGN6cDBZenBUUVUXTUIGSXVNRHBIWVCXbGFXUXRabT15Y1dGMESu
Qmxjbk5wYzNSbGJUUW1EUWONSUNBZO1GT1FUbUZOW1ZGMV1XeHBabWxsY2ow
aWVHMXdjQzVsZUdGdGNHeGxMbU52Y1NJIZ1FXeHNiM2REY21WaGRHVT1Ib1J5
ZFdVaUlDOCtEUWINUEhOaGJIXeHdPbEpsY1hWhGMzUmxaRUYXxZEdodVEYOXVk
R1YOZEEWS01DQWdJIQOIOY1d4dWN6CHPZVZFZzYOQwaWRYSnVPbTloYzJsekot
NWhiV1Z6T25Sak9sTkJIUVXc2TWkOdO9uQnliM1J2WTI5cO1pQU5DaUFNSUNB
Z01DQWARMj10YOdGeWFYTnZiajBpwWlhoaFkzUW1QZzBLSUNBOGMYRNRiRHBC
ZFhSb2JrTnzZiblJsZUhSRGJIHRNpjMUpsWmcwSO1DQWdJIQOFnZUcxc2IuTTZ]
MkZOYKQwaWRYSnNVPbT1loYzJsek9tNWhiV1Z6T25Sak9sTkIUVXc2TWkOdoot
RNpjM1Z5ZEdsdmIpSStEUWINDONBZO1DQjFjbTQ2Y]IGemFYTTZibUZOW1hN
NMRHTTZVMEZOVERveUxqQTZZVO02WT J4aGMzTmx jenBRWVhOemQy0X1aRkJ5
YjNSbFkzUmxaR1J5WVc1emNHOX1kQTBLSUNBOEWz TmhiV3c2UVhWMGFHNURL
M3jUwW1lhoMFEyeGhjMO5TW1dZKORRb2dQQz16WVcxc2NECFNaWEYXW1hOMFpX
Uk JKWFJvYmtOdmJuUmx1SFErSUEWS1BDOXpZVzFzYORWQMRYUM9ibEpsY1hw
bGMzUSs=

The decoded challenge is:

https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOk
F1dGhuUmVxdwVzdCB4bWxuczpzYW1scDOidXJuOm9hc21z0Om5hbwVzOnRj01l
NBTUw6M14wOnByb3RvY29sIgOKICAQIEIEPSJITfYMVNDIOZME1MTAZNDI40T
AS5YTMwWZMYXZTMXMTY4MzI3Zjc5NDcOOTgOIiBWZXJzaWOuPSIyLjAiDQogIC
AgSXNzdWVJIbnNOYW50PSIyMDASLTEYLTEWVDEXOjM50jMOWiIgRmOyY2VBdX
Robj0iZmFsc2UiDQogICAgSXNQYXNzaXZ1PSImYWxzZSINCiAgICBQcm90b2
NvbEJpbmRpbmc9InVybjpvYXNpczpuYWllczp@YzpTQUIMOjIuMDpiawWskaw
5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0awW9uQ29uc3VtZXITZXJI2aWN1VV
IJMPQOKICAQICAQICAiaHROCHM6LY94bXBwLmV4YWiwbGUUY29tLINBTUWVQX
NzZXJ0aW9uQ29uc3VtzXJITZXJ2aWN1Ij4NCiA8c2FtbDpJc3N1ZXIgeGlshn
M6c2FtbDOidXJuOm9hc21z0Om5hbwWVzONRjO1INBTUWEMi4wOmFzc2VydGlvbi
I+DQogICAgIGhOdHBz0i8veGlwcC51eGFtcGx1LmNvbQOKIDwvCc2FtbDpJc3
N1ZXI+DQogPHNhbWxwOk5hbWVJIRFBvbG1jeSB4bWxuczpzYW1lscDOidXJuOm

9hc21z0m5hbWVzONRjO1INBTUW6Mi4wOnByb3RVY29sIgOKICAgICBGb3JtYX
Q9InVybjpvYXNpczpuYW1llczp@YzpTQUIMOjIuMDpuYW1lawQtZm9ybWFOON
BlcnNpc3R1bnQiDQogICAgIFNQTMFtZVF1YWxpZmllcjOieGlwcC51eGFtcG
X1LmNvbSIgQWxsb3dDcmVhdGU9INRydWUiIC8+DQogPHNhbWxw01J1lcXV1c3
R1ZEF1dGhuQ29udGV4dAGKICAgICB4bWxuczpzYW1lscDOidXJuOm9hc21z0m
5hbWVzONnRjO1INBTUW6EMi4wOnByb3RVY29sIiANCiAgICAgICAgQ29tcGFyaX
Nvbj0izXhhY3QiPgOKICA8c2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1ZgOKIC
AgICAgeGlsbnM6c2FtbDOidXJuOm9hc21z0m5hbWVzONRjO1INBTUWEMi4wOm
Fzc2VydGlvbiI+DQogICAgICAgICAgIHVYbjpvYXNpczpuYWllczpOYzpTQU
1MOjIuMDphYzpjbGFzc2Vz01Bhc3N3b3JkUHJIvAGVYjdGVKkVHIhbnNwb3J0DQ
0gIDwvc2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1Zj4NCiA8L3NhbWxw01lJ1lcX
V1c3R1ZEF1dGhuQ29udGV4dD4gDQo8L3NhbWxwOkF1dGhuUmVxdwVzdD4=

Where the decoded SAMLRequest looks like:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
IsPassive="false"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL=
"https://xmpp.example.com/SAML/AssertionConsumerService">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
SPNameQualifier="xmpp.example.com" AllowCreate="true" />
<samlp:RequestedAuthnContext
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Comparison="exact">
<saml:AuthnContextClassRef
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>

Note: the server can use the request ID (_bec424fa5103428909a30ff1e31168327f79474984)
to correlate the SASL session with the SAML authentication.

Step 5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<incorrect-encoding/>

</failure>

</stream:stream>

Step 6: Client sends a BASE64 encoded empty response to the challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

</response>

[The client now sends the URL to a browser for processing. The browser engages in a hormal
SAML authentication flow (external to SASL), like redirection to the Identity Provider
(https://saml.example.org), the user logs into https://saml.example.org, and agrees to
authenticate to xmpp.example.com. A redirect is passed back to the client browser who
sends the AuthN response to the server, containing the subject-identifier as an attribute. If
the AuthN response doesn't contain the JID, the server maps the subject-identifier received
from the IdP to a JID]

Step 7: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 7 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 8: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="'http://etherx.jabber.org/streams'
to="example.com' version='1.0'>

Step 9: Server responds by sending a stream header to client along with any additional
features (or an empty features element):

<stream:stream xmlns='jabber:client'
xmlns:stream="'http://etherx.jabber.org/streams'
id='c2s_345' from='example.com' version='1.0'>
<stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
</stream:features>

Step 10: Client binds a resource:

<iq type='set' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</bind>
</ig>

Step 11: Server informs client of successful resource binding:

<iq type='result' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>somenode@example.com/someresource</jid>
</bind>
</ig>

Please note: line breaks were added to the base64 for clarity.

6.2. IMAP s

The following describes an IMAP exchange. Lines beginning with 'S:' indicate data sent by the
server, and lines starting with 'C:' indicate data sent by the client. Long lines are wrapped for
readability.

S: * OK IMAP4revi1l

C: . CAPABILITY

S: * CAPABILITY IMAP4revl STARTTLS

S OK CAPABILITY Completed

C STARTTLS

S: . OK Begin TLS negotiation now

C: . CAPABILITY

S: * CAPABILITY IMAP4revl AUTH=SAML20

S: . OK CAPABILITY Completed

C: . AUTHENTICATE SAML20

S: +

C: biwszZXhhbXBszZS5vcmc

S: + aHROCHM6LY9zYW1sLmV4YWiwbGUub3JInLINBTUwvVQNJvd3N1cjOTQUIMUMVX
dWVzdD1QSE50Y1d4d09rRjFKkR2h1VW1WeGRXVnpkQOIOY1ld4dwWN6CHpZVZzFz
YOQwaWRYSnVPbT1loYzJsek9tNWhiV1z6T25Sak9sTkJUVXc2Twkedo9uQnli
M1J2WTI5cO01nMEt JQOFNSUVSRVBTSMZZbVZgTKRIMFptRTFNVEF6TKRINEQU
QTVZVE13Wm1ZeFpUTXhNVFKOTXpJIM1pqYzVORGMWT1RNMElpQldawWEp6YVc5h
dVBTSX1MakFpRFFvZO1DQWATWE56ZFdWSmJuTjBZVzUwWUFNJeU1EQTNMVEV5
TFRFA1ZERXhPak®1T2pNMFdpSWASbT15WTJIWQmMRYUm9iajBpWm1Gc2MyVW1E
UWONSUNBZINYT1FZWE56YVhabFBTSMm1ZV3h6WINJTKNpQWdJQOJRY205MGIy
TnZiRUpwYm1ScGJItYz1JIb1lZ5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUX
TU9gSXVNRHBpYVc1a2FXNW5jenBJVKZSUUXWQ1BVMVFpRFFVZO1DQWARWES6
W1hKMGFXOXVRM]jl1YzNWdFpYS1RaWEoyYVdObFZWSk1QUTBLSUNBZO1DQWdJ
QOFpPYUhSMGNITTZMeTkOY1hCdOxtVjRZVzF3YkdVdVkyOXRMMU5CVFV3d1lFY
TnpaWEowYVc5dVEYOXVjM1ZOW1hKVFpYSjJhVe5sSWoOTKkNpQThjMkZOYKRw
SmMzTjFaWE1lnZUcxc2JuTTZjMkZOYkQwawWRYSnVPbTloYzJsek9tNwhiv1z6
T25Sak9sTkJUVXc2TWkOdO9tRnNpjM1Z5ZEdsdmIpSStEUWINSUNBZO1HaDBk
SEJ6T2k4dmVHMXdjQzVsZUdGAGNHeGXMbU52Y1EWS@1Ed3ZjMkZOYKRwSmMz
TjFaWEKkrRFFvZ1BITmhiV3h3T2s1aGJXVkpSRkJ2YkdsamVTQjRiV3h1Y3pw
el11XMXNjRDBpZFhKdU9tOWhjMmx6T201aGJIXVnpPblJqT2x0Q1RVdzZNaTR3
T25CeWIzUnZZMj1zSWcwSO1DQWdJIQOJIHYjNKAF1YUT1Ib1lZ5Ympwdl1lYTnB]j
enB1WVcxbGN6cDBZenBUUVUXTU9qSXVNRHBIWVCXbGFXUXRabT15Y1dGMEQu
Qmxjbk5wYzNSbGJUUWIEUWONSUNBZO1GT1FUbUZOW1ZGMV1XeHBabWxsY2ow
aWVHMXdjQzVsZUdGdGNHeGxMbU52YINJZ1FXeHNiM2REY21WaGRHVT1Jb1J5
ZFdVaUlDOCtEUW9NUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxXZEdodVEYyOXVk
R1YOZEEwSO1DQWdJQOIQY1d4dWN6CHpZVZzFzYOQwaWRYSnVPbTloYzJsek9t
NWhiV1Z6T25Sak9sTkJUVXc2TWkOdO9uQnl1liM1J2WTI5cO01lpQU5DaUFNSUNB
Z01DQWdRMj10YOdGeWFYTnZiajBpWlhoaFkzUW1QZzBLSUNBOGMYRNRiRHBC
ZFhSb2JrTnZiblJsZUhSRGJIJHRnpjMUpsWmcwSO1DQWdJIQOFNZUcxXc2JUuTTZ]
MkZOYkQwawWRYSnVPbT1loYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWkOdO9t
RnpjM1Z5ZEdsdmIpSStEUWONbONBZO1DQ]jFjbTQ2Y]jJGemFYTTZibUZOW1hN
NmRHTTZVMEZOVERvVeUXgQTZZVEeO2WTJ4aGMzTmx jenBRWVhOemQy0X1laRkJ5
YjNSbFkzUmxaR1J5WVc1emNHOX1kQTBLSUNBOEwWzTmhiV3c2UVhWMGFHNUR
MjUwW1lhoMFEyeGhjMO5TW1dZKORRb2dQQz16WVcxc2NECFNaWEYXW1hOMFpX
UKJKWFJIvYmtOdmJuUmx1SFEr SUEwWS1BDOXpZVzFzYORwWQMRYUM9ibEpsY1hw
bGMzUSs=

C:

S: . OK Success (tls protection)

TOC
7. Security Considerations

This section will address only security considerations associated with the use of SAML with
SASL applications. For considerations relating to SAML in general, the reader is referred to
the SAML specification and to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.

. . . TOC
7.1. Man in the middle and Tunneling Attacks
This mechanism is vulnerable to man in the middle and tunneling attacks unless a client
always verify the server identity before proceeding with authentication (see [RFC6125]).
Typically TLS is used to provide a secure channel with server authentication.
TOC

7.2. Binding SAML subject identifiers to Authorization Identities

As specified in [RFC4422], the server is responsible for binding credentials to a specific
authorization identity. It is therefore necessary that only specific trusted IdPs be allowed. This
is typical part of SAML trust establishment between RP's and IdP.

7.3. User Privacy o

The IdP is aware of each RP that a user logs into. There is nothing in the protocol to hide this
information from the IdP. It is not a requirement to track the visits, but there is nothing that
prohibits the collection of information. SASL servers should be aware that SAML IdPs will track
- to some extent - user access to their services.

7.4. Collusion between RPs —

It is possible for RPs to link data that they have collected on you. By using the same identifier
to log into every RP, collusion between RPs is possible. In SAML, targeted identity was
introduced. Targeted identity allows the IdP to transform the identifier the user typed in to an
opaque identifier. This way the RP would never see the actual user identifier, but a randomly
generated identifier. This is an option the user has to understand and decide to use if the IdP
is supporting it.

8. IANA Considerations TOC

The IANA is requested to register the following SASL profile:
SASL mechanism profile: SAML20

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Note: None

The IANA is further requested to assign an OID for this GSS mechanism in the SMI numbers
registry, with the prefix of iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to
reference this specification in the registry.

TOC
9. References

TOC
9.1. Normative References

[OASIS.saml-
bindings-2.0-
os]
[OASIS.saml- Cantor, S., Kemp, |., Philpott, R., and E. Maler, “Assertions and Protocol for the OASIS Security
core-2.0-os] Assertion Markup Lanquage (SAML) V2.0,” OASIS Standard saml-core-2.0-0s, March 2005.

[OASIS.saml- Hughes, }., Cantor, S., Hodges,]., Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for the
profiles-2.0- OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS Standard OASIS.saml-profiles-2.0-o0s,
os] March 2005.

[RFC1035] Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987
(IXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys,]., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext

Cantor, S., Hirsch, F., Kemp,]., Philpott, R., and E. Maler, “Bindings for the OASIS Security Assertion
Markup Lanquage (SAML) V2.0,” OASIS Standard saml-bindings-2.0-o0s, March 2005.

[RFC2743] Linn, J., “Generic Security Service Application Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).

[RFC39861] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” RFC 4422, June 2006
(IXT).

[RFC46438] Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC5801] Josefsson, S. and N. Willams, “Using Generic Security Service Application Program Interface (GSS-API)
Mechanisms in Simple Authentication and Security Layer (SASL): The GS2 Mechanism Family,”
RFC 5801, July 2010 (TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and V erification of Domain-Based A pplication Service
Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

m,fﬁ;gf.c' Raggett, D., Jacobs, I., and A. Hors, “HTML 4.01 Specification,” World Wide Web Consortium
19991224] Recommendation REC-htmI401-19991224, December 1999 (HTML).

. TOC
9.2. Informative References

[RFC1939] Myers, J. and M. Rose, “Post Office Protocol - Version 3,” STD 53, RFC 1939, May 1996 (TXT).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3501] Crispin, M., “INTERNET MESSA GE A CCESS PROTOCOL - VERSION 4rev1,” RFC 3501, March 2003 (TXT).
[RFC6120] Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Core,” RFC 6120, March 2011 (TXT).

. TOC
Appendix A. Acknowledgments
The authors would like to thank Scott Cantor, Joe Hildebrand, Josh Howlett, Leif Johansson,
Thomas Lenggenhager, Diego Lopez, Hank Mauldin, RL 'Bob' Morgan, Stefan Plug and
Hannes Tschofenig for their review and contributions.
TOC

Appendix B. Changes

mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
mailto:
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://tools.ietf.org/html/rfc1035
http://www.rfc-editor.org/rfc/rfc1035.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://www.rfc-editor.org/rfc/rfc2743.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc5801
http://www.rfc-editor.org/rfc/rfc5801.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://www.rfc-editor.org/rfc/rfc1939.txt
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3501
http://www.rfc-editor.org/rfc/rfc3501.txt
http://tools.ietf.org/html/rfc6120
http://www.rfc-editor.org/rfc/rfc6120.txt

This section to be removed prior to publication.

05 Fixed references per ID-nits

04 Added request for IANA assignment, few text clarifications

03 Number of cosmetic changes, fixes per comments Alexey Melnikov

02 Changed IdP URI to domain per Joe Hildebrand, fixed some typos

00 WG -00 draft. Updates GSS-API section, some fixes per Scott Cantor

01 Added authorization identity, added GSS-API specifics, added client supplied
IdP

e 00 Initial Revision.

Authors' Addresses

Klaas Wierenga
Cisco Systemes, Inc.
Haarlerbergweg 13-19
Amsterdam, Noord-Holland 1101 CH
Netherlands
Phone: +31 20 357 1752

Email: klaas@cisco.com

Eliot Lear
Cisco Systems GmbH
Richtistrasse 7
Wallisellen, ZH CH-8304
Switzerland

Phone: +41 44 878 9200

Email: lear@cisco.com

Simon Josefsson
S)D AB
Hagagatan 24
Stockholm 113 47
SE
Email: simon@josefsson.org
URI: http://josefsson.org/

TOC

mailto:klaas@cisco.com
mailto:lear@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	A SASL and GSS-API Mechanism for SAML draft-ietf-kitten-sasl-saml-05.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	2. Applicability for non-HTTP Use Cases
	3. SAML SASL Mechanism Specification
	3.1. Initial Response
	3.2. Authentication Request
	3.3. Outcome and parameters
	4. SAML GSS-API Mechanism Specification
	4.1. GSS-API Principal Name Types for SAML
	5. Channel Binding
	6. Examples
	6.1. XMPP
	6.2. IMAP
	7. Security Considerations
	7.1. Man in the middle and Tunneling Attacks
	7.2. Binding SAML subject identifiers to Authorization Identities
	7.3. User Privacy
	7.4. Collusion between RPs
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

