
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track September 3, 2013

Expires: March 7, 2014

JSON Web Algorithms (JWA)
draft-ietf-jose-json-web-algorithms-15

Abstract

The JSON Web Algorithms (JWA) specification registers cryptographic algorithms and
identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and
JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on March 7, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
2. Terminology
 2.1. Terms Incorporated from the JWS Specification
 2.2. Terms Incorporated from the JWE Specification
 2.3. Terms Incorporated from the JWK Specification
 2.4. Defined Terms
3. Cryptographic Algorithms for JWS
 3.1. "alg" (Algorithm) Header Parameter Values for JWS
 3.2. HMAC with SHA-2 Functions
 3.3. Digital Signature with RSASSA-PKCS1-V1_5
 3.4. Digital Signature with ECDSA
 3.5. Digital Signature with RSASSA-PSS
 3.6. Using the Algorithm "none"
4. Cryptographic Algorithms for JWE
 4.1. "alg" (Algorithm) Header Parameter Values for JWE

 4.2. "enc" (Encryption Method) Header Parameter Values for JWE
 4.3. Key Encryption with RSAES-PKCS1-V1_5
 4.4. Key Encryption with RSAES OAEP
 4.5. Key Wrapping with AES Key Wrap
 4.6. Direct Encryption with a Shared Symmetric Key
 4.7. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static
(ECDH-ES)
 4.7.1. Header Parameters Used for ECDH Key Agreement
 4.7.1.1. "epk" (Ephemeral Public Key) Header Parameter
 4.7.1.2. "apu" (Agreement PartyUInfo) Header Parameter
 4.7.1.3. "apv" (Agreement PartyVInfo) Header Parameter
 4.7.2. Key Derivation for ECDH Key Agreement
 4.8. Key Encryption with AES GCM
 4.8.1. Header Parameters Used for AES GCM Key Encryption
 4.8.1.1. "iv" (Initialization Vector) Header Parameter
 4.8.1.2. "tag" (Authentication Tag) Header Parameter
 4.9. Key Encryption with PBES2
 4.9.1. Header Parameters Used for PBES2 Key Encryption
 4.9.1.1. "p2s" (PBES2 salt) Parameter
 4.9.1.2. "p2c" (PBES2 count) Parameter
 4.10. AES_CBC_HMAC_SHA2 Algorithms
 4.10.1. Conventions Used in Defining AES_CBC_HMAC_SHA2
 4.10.2. Generic AES_CBC_HMAC_SHA2 Algorithm
 4.10.2.1. AES_CBC_HMAC_SHA2 Encryption
 4.10.2.2. AES_CBC_HMAC_SHA2 Decryption
 4.10.3. AES_128_CBC_HMAC_SHA_256
 4.10.4. AES_192_CBC_HMAC_SHA_384
 4.10.5. AES_256_CBC_HMAC_SHA_512
 4.10.6. Plaintext Encryption with AES_CBC_HMAC_SHA2
 4.11. Plaintext Encryption with AES GCM
5. Cryptographic Algorithms for JWK
 5.1. "kty" (Key Type) Parameter Values
 5.2. JWK Parameters for Elliptic Curve Keys
 5.2.1. JWK Parameters for Elliptic Curve Public Keys
 5.2.1.1. "crv" (Curve) Parameter
 5.2.1.2. "x" (X Coordinate) Parameter
 5.2.1.3. "y" (Y Coordinate) Parameter
 5.2.2. JWK Parameters for Elliptic Curve Private Keys
 5.2.2.1. "d" (ECC Private Key) Parameter
 5.3. JWK Parameters for RSA Keys
 5.3.1. JWK Parameters for RSA Public Keys
 5.3.1.1. "n" (Modulus) Parameter
 5.3.1.2. "e" (Exponent) Parameter
 5.3.2. JWK Parameters for RSA Private Keys
 5.3.2.1. "d" (Private Exponent) Parameter
 5.3.2.2. "p" (First Prime Factor) Parameter
 5.3.2.3. "q" (Second Prime Factor) Parameter
 5.3.2.4. "dp" (First Factor CRT Exponent) Parameter
 5.3.2.5. "dq" (Second Factor CRT Exponent) Parameter
 5.3.2.6. "qi" (First CRT Coefficient) Parameter
 5.3.2.7. "oth" (Other Primes Info) Parameter
 5.4. JWK Parameters for Symmetric Keys
 5.4.1. "k" (Key Value) Parameter
6. IANA Considerations
 6.1. JSON Web Signature and Encryption Algorithms Registry
 6.1.1. Template
 6.1.2. Initial Registry Contents
 6.2. JSON Web Key Types Registry
 6.2.1. Registration Template
 6.2.2. Initial Registry Contents
 6.3. JSON Web Key Parameters Registration
 6.3.1. Registry Contents
 6.4. Registration of JWE Header Parameter Names
 6.4.1. Registry Contents
7. Security Considerations
 7.1. Reusing Key Material when Encrypting Keys
 7.2. Password Considerations
8. Internationalization Considerations

 TOC

 TOC

 TOC

 TOC

9. References
 9.1. Normative References
 9.2. Informative References
Appendix A. Digital Signature/MAC Algorithm Identifier Cross-Reference
Appendix B. Encryption Algorithm Identifier Cross-Reference
Appendix C. Test Cases for AES_CBC_HMAC_SHA2 Algorithms
 C.1. Test Cases for AES_128_CBC_HMAC_SHA_256
 C.2. Test Cases for AES_192_CBC_HMAC_SHA_384
 C.3. Test Cases for AES_256_CBC_HMAC_SHA_512
Appendix D. Example ECDH-ES Key Agreement Computation
Appendix E. Acknowledgements
Appendix F. Document History
§ Author's Address

1. Introduction

The JSON Web Algorithms (JWA) specification registers cryptographic algorithms and
identifiers to be used with the JSON Web Signature (JWS) , JSON Web Encryption (JWE)

, and JSON Web Key (JWK) specifications. It defines several IANA registries for
these identifiers. All these specifications utilize JavaScript Object Notation (JSON)
based data structures. This specification also describes the semantics and operations that
are specific to these algorithms and key types.

Registering the algorithms and identifiers here, rather than in the JWS, JWE, and JWK
specifications, is intended to allow them to remain unchanged in the face of changes in the
set of Required, Recommended, Optional, and Deprecated algorithms over time. This also
allows changes to the JWS, JWE, and JWK specifications without changing this document.

Names defined by this specification are short because a core goal is for the resulting
representations to be compact.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

.

2. Terminology

2.1. Terms Incorporated from the JWS Specification

These terms defined by the JSON Web Signature (JWS) specification are incorporated
into this specification:

JSON Web Signature (JWS)
A data structure representing a digitally signed or MACed message. The structure
represents three values: the JWS Header, the JWS Payload, and the JWS Signature.

JSON Text Object
A UTF-8 encoded text string representing a JSON object; the syntax of
JSON objects is defined in Section 2.2 of .

JWS Header
A JSON Text Object (or JSON Text Objects, when using the JWS JSON Serialization)
that describes the digital signature or MAC operation applied to create the JWS
Signature value. The members of the JWS Header object(s) are Header
Parameters.

[JWS]
[JWE] [JWK]

[RFC4627]

[RFC2119]

[JWS]

[RFC3629]
[RFC4627]

 TOC

JWS Payload
The sequence of octets to be secured -- a.k.a., the message. The payload can
contain an arbitrary sequence of octets.

JWS Signature
A sequence of octets containing the cryptographic material that ensures the
integrity of the JWS Protected Header and the JWS Payload. The JWS Signature
value is a digital signature or MAC value calculated over the JWS Signing Input
using the parameters specified in the JWS Header.

JWS Protected Header
A JSON Text Object that contains the portion of the JWS Header that is integrity
protected. For the JWS Compact Serialization, this comprises the entire JWS
Header. For the JWS JSON Serialization, this is one component of the JWS Header.

Base64url Encoding
Base64 encoding using the URL- and filename-safe character set defined in
Section 5 of [RFC4648], with all trailing '=' characters omitted (as
permitted by Section 3.2). (See Appendix C of for notes on implementing
base64url encoding without padding.)

Encoded JWS Header
Base64url encoding of the JWS Protected Header.

Encoded JWS Payload
Base64url encoding of the JWS Payload.

Encoded JWS Signature
Base64url encoding of the JWS Signature.

JWS Signing Input
The concatenation of the Encoded JWS Header, a period ('.') character, and the
Encoded JWS Payload.

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. Examples of Collision Resistant
Namespaces include: Domain Names, Object Identifiers (OIDs) as defined in the
ITU-T X.660 and X.670 Recommendation series, and Universally Unique IDentifiers
(UUIDs) . When using an administratively delegated namespace, the
definer of a name needs to take reasonable precautions to ensure they are in
control of the portion of the namespace they use to define the name.

2.2. Terms Incorporated from the JWE Specification

These terms defined by the JSON Web Encryption (JWE) specification are incorporated
into this specification:

JSON Web Encryption (JWE)
A data structure representing an encrypted message. The structure represents
five values: the JWE Header, the JWE Encrypted Key, the JWE Initialization Vector,
the JWE Ciphertext, and the JWE Authentication Tag.

Authenticated Encryption
An Authenticated Encryption algorithm is one that provides an integrated content
integrity check. Authenticated Encryption algorithms accept two inputs, the
Plaintext and the Additional Authenticated Data value, and produce two outputs,
the Ciphertext and the Authentication Tag value. AES Galois/Counter Mode (GCM)
is one such algorithm.

Plaintext
The sequence of octets to be encrypted -- a.k.a., the message. The plaintext can
contain an arbitrary sequence of octets.

Ciphertext
An encrypted representation of the Plaintext.

Additional Authenticated Data (AAD)
An input to an Authenticated Encryption operation that is integrity protected but
not encrypted.

Authentication Tag
An output of an Authenticated Encryption operation that ensures the integrity of
the Ciphertext and the Additional Authenticated Data. Note that some algorithms
may not use an Authentication Tag, in which case this value is the empty octet
sequence.

Content Encryption Key (CEK)
A symmetric key for the Authenticated Encryption algorithm used to encrypt the

RFC 4648
[JWS]

[RFC4122]

[JWE]

 TOC

Plaintext for the recipient to produce the Ciphertext and the Authentication Tag.
JWE Header

A JSON Text Object (or JSON Text Objects, when using the JWE JSON Serialization)
that describes the encryption operations applied to create the JWE Encrypted Key,
the JWE Ciphertext, and the JWE Authentication Tag. The members of the JWE
Header object(s) are Header Parameters.

JWE Encrypted Key
The result of encrypting the Content Encryption Key (CEK) with the intended
recipient's key using the specified algorithm. Note that for some algorithms, the
JWE Encrypted Key value is specified as being the empty octet sequence.

JWE Initialization Vector
A sequence of octets containing the Initialization Vector used when encrypting the
Plaintext. Note that some algorithms may not use an Initialization Vector, in which
case this value is the empty octet sequence.

JWE Ciphertext
A sequence of octets containing the Ciphertext for a JWE.

JWE Authentication Tag
A sequence of octets containing the Authentication Tag for a JWE.

JWE Protected Header
A JSON Text Object that contains the portion of the JWE Header that is integrity
protected. For the JWE Compact Serialization, this comprises the entire JWE
Header. For the JWE JSON Serialization, this is one component of the JWE Header.

Encoded JWE Header
Base64url encoding of the JWE Protected Header.

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Initialization Vector
Base64url encoding of the JWE Initialization Vector.

Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.

Encoded JWE Authentication Tag
Base64url encoding of the JWE Authentication Tag.

Key Management Mode
A method of determining the Content Encryption Key (CEK) value to use. Each
algorithm used for determining the CEK value uses a specific Key Management
Mode. Key Management Modes employed by this specification are Key Encryption,
Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, and
Direct Encryption.

Key Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using an asymmetric encryption algorithm.

Key Wrapping
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using a symmetric key wrapping algorithm.

Direct Key Agreement
A Key Management Mode in which a key agreement algorithm is used to agree
upon the Content Encryption Key (CEK) value.

Key Agreement with Key Wrapping
A Key Management Mode in which a key agreement algorithm is used to agree
upon a symmetric key used to encrypt the Content Encryption Key (CEK) value to
the intended recipient using a symmetric key wrapping algorithm.

Direct Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value used is
the secret symmetric key value shared between the parties.

2.3. Terms Incorporated from the JWK Specification

These terms defined by the JSON Web Key (JWK) specification are incorporated into
this specification:

JSON Web Key (JWK)
A JSON object that represents a cryptographic key.

JSON Web Key Set (JWK Set)
A JSON object that contains an array of JWKs as the value of its keys member.

[JWK]

 TOC

 TOC

 TOC

 TOC

2.4. Defined Terms

These terms are defined for use by this specification:

Header Parameter
A name/value pair that is member of a JWS Header or JWE Header.

Header Parameter Name
The name of a member of a JSON object representing a JWS Header or JWE
Header.

Header Parameter Value
The value of a member of a JSON object representing a JWS Header or JWE Header.

3. Cryptographic Algorithms for JWS

JWS uses cryptographic algorithms to digitally sign or create a Message Authentication Codes
(MAC) of the contents of the JWS Header and the JWS Payload.

3.1. "alg" (Algorithm) Header Parameter Values for JWS

The table below is the set of alg (algorithm) header parameter values defined by this
specification for use with JWS, each of which is explained in more detail in the following
sections:

alg
Parameter
Value

Digital Signature or MAC Algorithm
Implementation
Requirements

HS256 HMAC using SHA-256 hash algorithm Required

HS384 HMAC using SHA-384 hash algorithm Optional

HS512 HMAC using SHA-512 hash algorithm Optional

RS256 RSASSA-PKCS-v1_5 using SHA-256 hash algorithm Recommended

RS384 RSASSA-PKCS-v1_5 using SHA-384 hash algorithm Optional

RS512 RSASSA-PKCS-v1_5 using SHA-512 hash algorithm Optional

ES256 ECDSA using P-256 curve and SHA-256 hash algorithm Recommended+

ES384 ECDSA using P-384 curve and SHA-384 hash algorithm Optional

ES512 ECDSA using P-521 curve and SHA-512 hash algorithm Optional

PS256 RSASSA-PSS using SHA-256 hash algorithm and MGF1 mask
generation function with SHA-256

Optional

PS384 RSASSA-PSS using SHA-384 hash algorithm and MGF1 mask
generation function with SHA-384

Optional

PS512 RSASSA-PSS using SHA-512 hash algorithm and MGF1 mask
generation function with SHA-512

Optional

none No digital signature or MAC value included Required

The use of "+" in the Implementation Requirements indicates that the requirement strength
is likely to be increased in a future version of the specification.

See for a table cross-referencing the digital signature and MAC alg (algorithm)
values used in this specification with the equivalent identifiers used by other standards and
software packages.

3.2. HMAC with SHA-2 Functions

Appendix A

 TOC

Hash-based Message Authentication Codes (HMACs) enable one to use a secret plus a
cryptographic hash function to generate a Message Authentication Code (MAC). This can be
used to demonstrate that whoever generated the MAC was in possession of the MAC key.

The algorithm for implementing and validating HMACs is provided in [RFC2104].
This section defines the use of the HMAC SHA-256, HMAC SHA-384, and HMAC SHA-512
functions . The alg (algorithm) header parameter values HS256, HS384, and HS512 are
used in the JWS Header to indicate that the Encoded JWS Signature contains a base64url
encoded HMAC value using the respective hash function.

A key of the same size as the hash output (for instance, 256 bits for HS256) or larger MUST
be used with this algorithm.

The HMAC SHA-256 MAC is generated per RFC 2104, using SHA-256 as the hash algorithm
"H", using the octets of the ASCII representation of the JWS Signing Input as the
"text" value, and using the shared key. The HMAC output value is the JWS Signature. The JWS
signature is base64url encoded to produce the Encoded JWS Signature.

The HMAC SHA-256 MAC for a JWS is validated by computing an HMAC value per RFC 2104,
using SHA-256 as the hash algorithm "H", using the octets of the ASCII representation of the
received JWS Signing Input as the "text" value, and using the shared key. This computed
HMAC value is then compared to the result of base64url decoding the received Encoded JWS
signature. Alternatively, the computed HMAC value can be base64url encoded and compared
to the received Encoded JWS Signature, as this comparison produces the same result as
comparing the unencoded values. In either case, if the values match, the HMAC has been
validated.

Securing content with the HMAC SHA-384 and HMAC SHA-512 algorithms is performed
identically to the procedure for HMAC SHA-256 - just using the corresponding hash
algorithms with correspondingly larger minimum key sizes and result values: 384 bits each
for HMAC SHA-384 and 512 bits each for HMAC SHA-512.

An example using this algorithm is shown in Appendix A.1 of .

3.3. Digital Signature with RSASSA-PKCS1-V1_5

This section defines the use of the RSASSA-PKCS1-V1_5 digital signature algorithm as
defined in Section 8.2 of [RFC3447] (commonly known as PKCS #1), using SHA-
256, SHA-384, or SHA-512 as the hash functions. The alg (algorithm) header
parameter values RS256, RS384, and RS512 are used in the JWS Header to indicate that the
Encoded JWS Signature contains a base64url encoded RSASSA-PKCS1-V1_5 digital signature
using the respective hash function.

A key of size 2048 bits or larger MUST be used with these algorithms.

The RSASSA-PKCS1-V1_5 SHA-256 digital signature is generated as follows:

1. Generate a digital signature of the octets of the ASCII representation of the JWS
Signing Input using RSASSA-PKCS1-V1_5-SIGN and the SHA-256 hash function
with the desired private key. The output will be an octet sequence.

2. Base64url encode the resulting octet sequence.

The output is the Encoded JWS Signature for that JWS.

The RSASSA-PKCS1-V1_5 SHA-256 digital signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into an octet
sequence. If decoding fails, the validation has failed.

2. Submit the octets of the ASCII representation of the JWS Signing Input and the
public key corresponding to the private key used by the signer to the RSASSA-
PKCS1-V1_5-VERIFY algorithm using SHA-256 as the hash function.

Signing with the RSASSA-PKCS1-V1_5 SHA-384 and RSASSA-PKCS1-V1_5 SHA-512
algorithms is performed identically to the procedure for RSASSA-PKCS1-V1_5 SHA-256 - just
using the corresponding hash algorithms instead of SHA-256.

An example using this algorithm is shown in Appendix A.2 of .

RFC 2104

[SHS]

[USASCII]

[JWS]

RFC 3447
[SHS]

[JWS]

 TOC

 TOC

3.4. Digital Signature with ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) provides for the use of Elliptic
Curve cryptography, which is able to provide equivalent security to RSA cryptography but
using shorter key sizes and with greater processing speed. This means that ECDSA digital
signatures will be substantially smaller in terms of length than equivalently strong RSA digital
signatures.

This specification defines the use of ECDSA with the P-256 curve and the SHA-256
cryptographic hash function, ECDSA with the P-384 curve and the SHA-384 hash function,
and ECDSA with the P-521 curve and the SHA-512 hash function. The P-256, P-384, and P-
521 curves are defined in . The alg (algorithm) header parameter values ES256,
ES384, and ES512 are used in the JWS Header to indicate that the Encoded JWS Signature
contains a base64url encoded ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-
521 SHA-512 digital signature, respectively.

The ECDSA P-256 SHA-256 digital signature is generated as follows:

1. Generate a digital signature of the octets of the ASCII representation of the JWS
Signing Input using ECDSA P-256 SHA-256 with the desired private key. The
output will be the pair (R, S), where R and S are 256 bit unsigned integers.

2. Turn R and S into octet sequences in big endian order, with each array being be
32 octets long. The array representations MUST NOT be shortened to omit any
leading zero octets contained in the values.

3. Concatenate the two octet sequences in the order R and then S. (Note that
many ECDSA implementations will directly produce this concatenation as their
output.)

4. Base64url encode the resulting 64 octet sequence.

The output is the Encoded JWS Signature for the JWS.

The ECDSA P-256 SHA-256 digital signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into an octet
sequence. If decoding fails, the validation has failed.

2. The output of the base64url decoding MUST be a 64 octet sequence. If decoding
does not result in a 64 octet sequence, the validation has failed.

3. Split the 64 octet sequence into two 32 octet sequences. The first array will be R
and the second S (with both being in big endian octet order).

4. Submit the octets of the ASCII representation of the JWS Signing Input R, S and
the public key (x, y) to the ECDSA P-256 SHA-256 validator.

Signing with the ECDSA P-384 SHA-384 and ECDSA P-521 SHA-512 algorithms is performed
identically to the procedure for ECDSA P-256 SHA-256 - just using the corresponding hash
algorithms with correspondingly larger result values. For ECDSA P-384 SHA-384, R and S will
be 384 bits each, resulting in a 96 octet sequence. For ECDSA P-521 SHA-512, R and S will
be 521 bits each, resulting in a 132 octet sequence.

Examples using these algorithms are shown in Appendices A.3 and A.4 of .

3.5. Digital Signature with RSASSA-PSS

This section defines the use of the RSASSA-PSS digital signature algorithm as defined in
Section 8.1 of [RFC3447] with the MGF1 mask generation function, always using
the same hash function for both the RSASSA-PSS hash function and the MGF1 hash function.
Use of SHA-256, SHA-384, and SHA-512 as these hash functions is defined. The size of the
salt value is the same size as the hash function output. All other algorithm parameters use
the defaults specified in Section A.2.3 of RFC 3447. The alg (algorithm) header parameter
values PS256, PS384, and PS512 are used in the JWS Header to indicate that the Encoded
JWS Signature contains a base64url encoded RSASSA-PSS digital signature using the
respective hash function in both roles.

[DSS]

[DSS]

[JWS]

RFC 3447

 TOC

 TOC

 TOC

A key of size 2048 bits or larger MUST be used with this algorithm.

The RSASSA-PSS SHA-256 digital signature is generated as follows:

1. Generate a digital signature of the octets of the ASCII representation of the JWS
Signing Input using RSASSA-PSS-SIGN, the SHA-256 hash function, and the
MGF1 mask generation function with SHA-256 with the desired private key. The
output will be an octet sequence.

2. Base64url encode the resulting octet sequence.

The output is the Encoded JWS Signature for that JWS.

The RSASSA-PSS SHA-256 digital signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into an octet
sequence. If decoding fails, the validation has failed.

2. Submit the octets of the ASCII representation of the JWS Signing Input and the
public key corresponding to the private key used by the signer to the RSASSA-
PSS-VERIFY algorithm using SHA-256 as the hash function and using MGF1 as
the mask generation function with SHA-256.

Signing with the RSASSA-PSS SHA-384 and RSASSA-PSS SHA-512 algorithms is performed
identically to the procedure for RSASSA-PSS SHA-256 - just using the alternative hash
algorithm in both roles.

3.6. Using the Algorithm "none"

JWSs MAY also be created that do not provide integrity protection. Such a JWS is called a
"Plaintext JWS". Plaintext JWSs MUST use the alg value none, and are formatted identically to
other JWSs, but with the empty string for its JWS Signature value.

4. Cryptographic Algorithms for JWE

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CEK) and the
Plaintext.

4.1. "alg" (Algorithm) Header Parameter Values for JWE

The table below is the set of alg (algorithm) header parameter values that are defined by
this specification for use with JWE. These algorithms are used to encrypt the CEK, producing
the JWE Encrypted Key, or to use key agreement to agree upon the CEK.

alg
Parameter
Value

Key Management Algorithm
Additional
Header
Parameters

Implementation
Requirements

RSA1_5 RSAES-PKCS1-V1_5 (none) Required

RSA-OAEP

RSAES using Optimal Asymmetric Encryption
Padding (OAEP) , with the default
parameters specified by RFC 3447 in Section
A.2.1

(none) Optional

A128KW

Advanced Encryption Standard (AES) Key Wrap
Algorithm using the default initial
value specified in Section 2.2.3.1 and using 128
bit keys

(none) Recommended

A192KW
AES Key Wrap Algorithm using the default initial
value specified in Section 2.2.3.1 and using 192
bit keys

(none) Optional

A256KW
AES Key Wrap Algorithm using the default initial
value specified in Section 2.2.3.1 and using 256 (none) Recommended

[RFC3447]

[RFC3447]

[RFC3394]

 TOC

bit keys

dir

Direct use of a shared symmetric key as the
Content Encryption Key (CEK) for the content
encryption step (rather than using the symmetric
key to wrap the CEK)

(none) Recommended

ECDH-ES

Elliptic Curve Diffie-Hellman Ephemeral Static
 key agreement using the Concat

KDF, as defined in Section 5.8.1 of
, with the agreed-upon key

being used directly as the Content Encryption Key
(CEK) (rather than being used to wrap the CEK),
as specified in

epk, apu, apv Recommended+

ECDH-
ES+A128KW

Elliptic Curve Diffie-Hellman Ephemeral Static key
agreement per ECDH-ES and , where
the agreed-upon key is used to wrap the Content
Encryption Key (CEK) with the A128KW function
(rather than being used directly as the CEK)

epk, apu, apv Recommended

ECDH-
ES+A192KW

Elliptic Curve Diffie-Hellman Ephemeral Static key
agreement, where the agreed-upon key is used
to wrap the Content Encryption Key (CEK) with
the A192KW function (rather than being used
directly as the CEK)

epk, apu, apv Optional

ECDH-
ES+A256KW

Elliptic Curve Diffie-Hellman Ephemeral Static key
agreement, where the agreed-upon key is used
to wrap the Content Encryption Key (CEK) with
the A256KW function (rather than being used
directly as the CEK)

epk, apu, apv Recommended

A128GCMKW AES in Galois/Counter Mode (GCM)
 using 128 bit keys

iv, tag Optional

A192GCMKW AES GCM using 192 bit keys iv, tag Optional

A256GCMKW AES GCM using 256 bit keys iv, tag Optional

PBES2-
HS256+A128KW

PBES2 with HMAC SHA-256 as the
PRF and AES Key Wrap using 128 bit
keys for the encryption scheme

p2s, p2c Optional

PBES2-
HS384+A192KW

PBES2 with HMAC SHA-256 as the PRF and AES
Key Wrap using 192 bit keys for the encryption
scheme

p2s, p2c Optional

PBES2-
HS512+A256KW

PBES2 with HMAC SHA-256 as the PRF and AES
Key Wrap using 256 bit keys for the encryption
scheme

p2s, p2c Optional

The Additional Header Parameters column indicates what additional Header Parameters are
used by the algorithm, beyond alg, which all use. All but dir and ECDH-ES also produce a
JWE Encrypted Key value.

The use of "+" in the Implementation Requirements indicates that the requirement strength
is likely to be increased in a future version of the specification.

4.2. "enc" (Encryption Method) Header Parameter Values for JWE

The table below is the set of enc (encryption method) header parameter values that are
defined by this specification for use with JWE. These algorithms are used to encrypt the
Plaintext, which produces the Ciphertext.

enc
Parameter
Value

Content Encryption Algorithm
Additional
Header
Parameters

Implementation
Requirements

A128CBC-
HS256

The AES_128_CBC_HMAC_SHA_256 authenticated
encryption algorithm, as defined in .
This algorithm uses a 256 bit key.

(none) Required

[RFC6090]

[NIST.800‑56A]

Section 4.7

Section 4.7

[AES]
[NIST.800‑38D]

[RFC2898]
[RFC3394]

Section 4.10.3

 TOC

 TOC

 TOC

 TOC

A192CBC-
HS384

The AES_192_CBC_HMAC_SHA_384 authenticated
encryption algorithm, as defined in .
This algorithm uses a 384 bit key.

(none) Optional

A256CBC-
HS512

The AES_256_CBC_HMAC_SHA_512 authenticated
encryption algorithm, as defined in .
This algorithm uses a 512 bit key.

(none) Required

A128GCM AES in Galois/Counter Mode (GCM)
 using 128 bit keys

(none) Recommended

A192GCM AES GCM using 192 bit keys (none) Optional

A256GCM AES GCM using 256 bit keys (none) Recommended

The Additional Header Parameters column indicates what additional Header Parameters are
used by the algorithm, beyond enc, which all use. All also use a JWE Initialization Vector value
and produce JWE Ciphertext and JWE Authentication Tag values.

See for a table cross-referencing the encryption alg (algorithm) and enc
(encryption method) values used in this specification with the equivalent identifiers used by
other standards and software packages.

4.3. Key Encryption with RSAES-PKCS1-V1_5

This section defines the specifics of encrypting a JWE CEK with RSAES-PKCS1-V1_5
. The alg header parameter value RSA1_5 is used in this case.

A key of size 2048 bits or larger MUST be used with this algorithm.

An example using this algorithm is shown in Appendix A.2 of .

4.4. Key Encryption with RSAES OAEP

This section defines the specifics of encrypting a JWE CEK with RSAES using Optimal
Asymmetric Encryption Padding (OAEP) , with the default parameters specified
by RFC 3447 in Section A.2.1. The alg header parameter value RSA-OAEP is used in this
case.

A key of size 2048 bits or larger MUST be used with this algorithm.

An example using this algorithm is shown in Appendix A.1 of .

4.5. Key Wrapping with AES Key Wrap

This section defines the specifics of encrypting a JWE CEK with the Advanced Encryption
Standard (AES) Key Wrap Algorithm using the default initial value specified in
Section 2.2.3.1 using 128, 192, or 256 bit keys. The alg header parameter values A128KW,
A192KW, or A256KW are respectively used in this case.

An example using this algorithm is shown in Appendix A.3 of .

4.6. Direct Encryption with a Shared Symmetric Key

This section defines the specifics of directly performing symmetric key encryption without
performing a key wrapping step. In this case, the shared symmetric key is used directly as
the Content Encryption Key (CEK) value for the enc algorithm. An empty octet sequence is
used as the JWE Encrypted Key value. The alg header parameter value dir is used in this
case.

Section 4.10.4

Section 4.10.5

[AES]
[NIST.800‑38D]

Appendix B

[RFC3447]

[JWE]

[RFC3447]

[JWE]

[RFC3394]

[JWE]

 TOC

 TOC

 TOC

 TOC

 TOC

4.7. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES)

This section defines the specifics of key agreement with Elliptic Curve Diffie-Hellman
Ephemeral Static , in combination with the Concat KDF, as defined in Section
5.8.1 of . The key agreement result can be used in one of two ways:

1. directly as the Content Encryption Key (CEK) for the enc algorithm, in the Direct
Key Agreement mode, or

2. as a symmetric key used to wrap the CEK with the A128KW, A192KW, or A256KW
algorithms, in the Key Agreement with Key Wrapping mode.

The alg header parameter value ECDH-ES is used in the Direct Key Agreement mode and
the values ECDH-ES+A128KW, ECDH-ES+A192KW, or ECDH-ES+A256KW are used in the Key
Agreement with Key Wrapping mode.

In the Direct Key Agreement case, the output of the Concat KDF MUST be a key of the same
length as that used by the enc algorithm; in this case, the empty octet sequence is used as
the JWE Encrypted Key value. In the Key Agreement with Key Wrapping case, the output of the
Concat KDF MUST be a key of the length needed for the specified key wrapping algorithm,
one of 128, 192, or 256 bits respectively.

A new ephemeral public key value MUST be generated for each key agreement operation.

4.7.1. Header Parameters Used for ECDH Key Agreement

The following Header Parameter Names are reserved and are used for key agreement as
defined below.

4.7.1.1. "epk" (Ephemeral Public Key) Header Parameter

The epk (ephemeral public key) value created by the originator for the use in key agreement
algorithms. This key is represented as a JSON Web Key public key value. It MUST
contain only public key parameters and SHOULD contain only the minimum JWK parameters
necessary to represent the key; other JWK parameters included can be checked for
consistency and honored or can be ignored. This Header Parameter is REQUIRED and MUST
be understood and processed by implementations when these algorithms are used.

4.7.1.2. "apu" (Agreement PartyUInfo) Header Parameter

The apu (agreement PartyUInfo) value for key agreement algorithms using it (such as ECDH-
ES), represented as a base64url encoded string. When used, the PartyUInfo value contains
information about the sender. Use of this Header Parameter is OPTIONAL. This Header
Parameter MUST be understood and processed by implementations when these algorithms
are used.

4.7.1.3. "apv" (Agreement PartyVInfo) Header Parameter

The apv (agreement PartyVInfo) value for key agreement algorithms using it (such as ECDH-
ES), represented as a base64url encoded string. When used, the PartyVInfo value contains
information about the receiver. Use of this Header Parameter is OPTIONAL. This Header
Parameter MUST be understood and processed by implementations when these algorithms
are used.

[RFC6090]
[NIST.800‑56A]

[JWK]

 TOC

 TOC

4.7.2. Key Derivation for ECDH Key Agreement

The key derivation process derives the agreed upon key from the shared secret Z
established through the ECDH algorithm, per Section 6.2.2.2 of .

Key derivation is performed using the Concat KDF, as defined in Section 5.8.1 of
, where the Digest Method is SHA-256. The Concat KDF parameters are set

as follows:

Z
This is set to the representation of the shared secret Z as an octet sequence.

keydatalen
This is set to the number of bits in the desired output key. For ECDH-ES, this is
length of the key used by the enc algorithm. For ECDH-ES+A128KW, ECDH-
ES+A192KW, and ECDH-ES+A256KW, this is 128, 192, and 256, respectively.

AlgorithmID
In the Direct Key Agreement case, this is set to the octets of the UTF-8
representation of the enc header parameter value. In the Key Agreement with Key
Wrapping case, this is set to the octets of the UTF-8 representation of the alg
header parameter value.

PartyUInfo
The PartyUInfo value is of the form Datalen || Data, where Data is a variable-length
string of zero or more octets, and Datalen is a fixed-length, big endian 32 bit
counter that indicates the length (in octets) of Data, with || being concatenation. If
an apu (agreement PartyUInfo) header parameter is present, Data is set to the
result of base64url decoding the apu value and Datalen is set to the number of
octets in Data. Otherwise, Datalen is set to 0 and Data is set to the empty octet
sequence.

PartyVInfo
The PartyVInfo value is of the form Datalen || Data, where Data is a variable-length
string of zero or more octets, and Datalen is a fixed-length, big endian 32 bit
counter that indicates the length (in octets) of Data, with || being concatenation. If
an apv (agreement PartyVInfo) header parameter is present, Data is set to the
result of base64url decoding the apv value and Datalen is set to the number of
octets in Data. Otherwise, Datalen is set to 0 and Data is set to the empty octet
sequence.

SuppPubInfo
This is set to the keydatalen represented as a 32 bit big endian integer.

SuppPrivInfo
This is set to the empty octet sequence.

See for an example key agreement computation using this method.

Note: The Diffie-Hellman Key Agreement Method uses a key derivation function
similar to the Concat KDF, but with fewer parameters. Rather than having separate
PartyUInfo and PartyVInfo parameters, it uses a single PartyAInfo parameter, which is a
random string provided by the sender, that contains 512 bits of information, when provided.
It has no SuppPrivInfo parameter. Should it be appropriate for the application, key agreement
can be performed in a manner akin to RFC 2631 by using the PartyAInfo value as the apu
(Agreement PartyUInfo) header parameter value, when provided, and by using no apv
(Agreement PartyVInfo) header parameter.

4.8. Key Encryption with AES GCM

This section defines the specifics of encrypting a JWE Content Encryption Key (CEK) with
Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM)
using 128, 192, or 256 bit keys. The alg header parameter values A128GCMKW, A192GCMKW,
or A256GCMKW are respectively used in this case.

Use of an Initialization Vector of size 96 bits is REQUIRED with this algorithm. The Initialization
Vector is represented in base64url encoded form as the iv (initialization vector) header
parameter value.

[NIST.800‑56A]

[NIST.800‑56A]

Appendix D

[RFC2631]

[AES] [NIST.800‑38D]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The Additional Authenticated Data value used is the empty octet string.

The requested size of the Authentication Tag output MUST be 128 bits, regardless of the key
size.

The JWE Encrypted Key value is the Ciphertext output.

The Authentication Tag output is represented in base64url encoded form as the tag
(authentication tag) header parameter value.

4.8.1. Header Parameters Used for AES GCM Key Encryption

The following Header Parameters are used for AES GCM key encryption.

4.8.1.1. "iv" (Initialization Vector) Header Parameter

The iv (initialization vector) header parameter value is the base64url encoded
representation of the Initialization Vector value used for the key encryption operation. This
Header Parameter is REQUIRED and MUST be understood and processed by
implementations when these algorithms are used.

4.8.1.2. "tag" (Authentication Tag) Header Parameter

The tag (authentication tag) header parameter value is the base64url encoded
representation of the Authentication Tag value resulting from the key encryption operation.
This Header Parameter is REQUIRED and MUST be understood and processed by
implementations when these algorithms are used.

4.9. Key Encryption with PBES2

The PBES2-HS256+A128KW, PBES2-HS384+A192KW, and PBES2-HS512+A256KW composite
algorithms are used to perform password-based encryption of a JWE CEK, by first deriving a
key encryption key from a user-supplied password, then encrypting the JWE CEK using the
derived key. These algorithms are PBES2 schemes as specified in Section 6.2 of .

These algorithms use HMAC SHA-2 algorithms as the Pseudo-Random Function (PRF) for the
PBKDF2 key derivation and AES Key Wrap for the encryption scheme. The salt
MUST be provided as the p2s header parameter value, and MUST be base64url decoded to
obtain the value. The iteration count parameter MUST be provided as the p2c header
parameter value. The algorithms respectively use HMAC SHA-256, HMAC SHA-384, and
HMAC SHA-512 as the PRF and use 128, 192, and 256 bit AES Key Wrap keys. Their derived-
key lengths (dkLen) respectively are 16, 24, and 32 octets.

4.9.1. Header Parameters Used for PBES2 Key Encryption

The following Header Parameters are used for Key Encryption with PBES2.

4.9.1.1. "p2s" (PBES2 salt) Parameter

The p2s (PBES2 salt) header parameter contains the PBKDF2 salt value, encoded using
base64url. This Header Parameter is REQUIRED and MUST be understood and processed by

[RFC2898]

[RFC3394]

 TOC

 TOC

 TOC

 TOC

 TOC

implementations when these algorithms are used.

The salt expands the possible keys that can be derived from a given password. A salt value
containing 8 or more octets MUST be used. A new salt value MUST be generated randomly
for every encryption operation; see for considerations on generating random
values.

4.9.1.2. "p2c" (PBES2 count) Parameter

The p2c (PBES2 count) header parameter contains the PBKDF2 iteration count, represented
as a positive integer. This Header Parameter is REQUIRED and MUST be understood and
processed by implementations when these algorithms are used.

The iteration count adds computational expense, ideally compounded by the possible range
of keys introduced by the salt. A minimum iteration count of 1000 is RECOMMENDED.

4.10. AES_CBC_HMAC_SHA2 Algorithms

This section defines a family of authenticated encryption algorithms built using a composition
of Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC) mode with PKCS #5
padding operations and HMAC operations. This
algorithm family is called AES_CBC_HMAC_SHA2. It also defines three instances of this
family, the first using 128 bit CBC keys and HMAC SHA-256, the second using 192 bit CBC
keys and HMAC SHA-384, and the third using 256 bit CBC keys and HMAC SHA-512. Test
cases for these algorithms can be found in .

These algorithms are based upon
 [I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2], performing the same cryptographic

computations, but with the Initialization Vector and Authentication Tag values remaining
separate, rather than being concatenated with the Ciphertext value in the output
representation. This option is discussed in Appendix B of that specification. This algorithm
family is a generalization of the algorithm family in

, and can be used to implement those
algorithms.

4.10.1. Conventions Used in Defining AES_CBC_HMAC_SHA2

We use the following notational conventions.

CBC-PKCS5-ENC(X, P) denotes the AES CBC encryption of P using PKCS #5
padding using the cipher with the key X.

MAC(Y, M) denotes the application of the Message Authentication Code (MAC) to
the message M, using the key Y.

The concatenation of two octet strings A and B is denoted as A || B.

4.10.2. Generic AES_CBC_HMAC_SHA2 Algorithm

This section defines AES_CBC_HMAC_SHA2 in a manner that is independent of the AES CBC
key size or hash function to be used. and define the
generic encryption and decryption algorithms. and define
instances of AES_CBC_HMAC_SHA2 that specify those details.

4.10.2.1. AES_CBC_HMAC_SHA2 Encryption

[RFC4086]

[AES] [NIST.800‑38A] [RFC2104] [SHS]

Appendix C

Authenticated Encryption with AES-CBC and HMAC-
SHA

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

Section 4.10.2.1 Section 4.10.2.2
Section 4.10.3 Section 4.10.5

 TOC

The authenticated encryption algorithm takes as input four octet strings: a secret key K, a
plaintext P, associated data A, and an initialization vector IV. The authenticated ciphertext
value E and the authentication tag value T are provided as outputs. The data in the plaintext
are encrypted and authenticated, and the associated data are authenticated, but not
encrypted.

The encryption process is as follows, or uses an equivalent set of steps:

1. The secondary keys MAC_KEY and ENC_KEY are generated from the input key K
as follows. Each of these two keys is an octet string.

MAC_KEY consists of the initial MAC_KEY_LEN octets of K, in
order.

ENC_KEY consists of the final ENC_KEY_LEN octets of K, in
order.

Here we denote the number of octets in the MAC_KEY as MAC_KEY_LEN, and the
number of octets in ENC_KEY as ENC_KEY_LEN; the values of these parameters
are specified by the AEAD algorithms (in and).
The number of octets in the input key K is the sum of MAC_KEY_LEN and
ENC_KEY_LEN. When generating the secondary keys from K, MAC_KEY and
ENC_KEY MUST NOT overlap. Note that the MAC key comes before the
encryption key in the input key K; this is in the opposite order of the algorithm
names in the identifier "AES_CBC_HMAC_SHA2".

2. The Initialization Vector (IV) used is a 128 bit value generated randomly or
pseudorandomly for use in the cipher.

3. The plaintext is CBC encrypted using PKCS #5 padding using ENC_KEY as the
key, and the IV. We denote the ciphertext output from this step as E.

4. The octet string AL is equal to the number of bits in A expressed as a 64-bit
unsigned integer in network byte order.

5. A message authentication tag T is computed by applying HMAC to
the following data, in order:

the associated data A,

the initialization vector IV,

the ciphertext E computed in the previous step, and

the octet string AL defined above.

The string MAC_KEY is used as the MAC key. We denote the output of the MAC
computed in this step as M. The first T_LEN bits of M are used as T.

6. The Ciphertext E and the Authentication Tag T are returned as the outputs of the
authenticated encryption.

The encryption process can be illustrated as follows. Here K, P, A, IV, and E denote the key,
plaintext, associated data, initialization vector, and ciphertext, respectively.

MAC_KEY = initial MAC_KEY_LEN bytes of K,

ENC_KEY = final ENC_KEY_LEN bytes of K,

E = CBC-PKCS5-ENC(ENC_KEY, P),

M = MAC(MAC_KEY, A || IV || E || AL),

T = initial T_LEN bytes of M.

4.10.2.2. AES_CBC_HMAC_SHA2 Decryption

The authenticated decryption operation has four inputs: K, A, E, and T as defined above. It
has only a single output, either a plaintext value P or a special symbol FAIL that indicates that
the inputs are not authentic. The authenticated decryption algorithm is as follows, or uses an
equivalent set of steps:

Section 4.10.3 Section 4.10.5

[RFC2104]

 TOC

 TOC

 TOC

1. The secondary keys MAC_KEY and ENC_KEY are generated from the input key K
as in Step 1 of .

2. The integrity and authenticity of A and E are checked by computing an HMAC
with the inputs as in Step 5 of . The value T, from the previous
step, is compared to the first MAC_KEY length bits of the HMAC output. If those
values are identical, then A and E are considered valid, and processing is
continued. Otherwise, all of the data used in the MAC validation are discarded,
and the AEAD decryption operation returns an indication that it failed, and the
operation halts. (But see Section 10 of for security considerations on
thwarting timing attacks.)

3. The value E is decrypted and the PKCS #5 padding is removed. The value IV is
used as the initialization vector. The value ENC_KEY is used as the decryption
key.

4. The plaintext value is returned.

4.10.3. AES_128_CBC_HMAC_SHA_256

This algorithm is a concrete instantiation of the generic AES_CBC_HMAC_SHA2 algorithm
above. It uses the HMAC message authentication code with the SHA-256 hash
function to provide message authentication, with the HMAC output truncated to 128
bits, corresponding to the HMAC-SHA-256-128 algorithm defined in . For
encryption, it uses AES in the Cipher Block Chaining (CBC) mode of operation as defined in
Section 6.2 of , with PKCS #5 padding.

The input key K is 32 octets long.

The AES CBC IV is 16 octets long. ENC_KEY_LEN is 16 octets.

The SHA-256 hash algorithm is used in HMAC. MAC_KEY_LEN is 16 octets. The HMAC-SHA-
256 output is truncated to T_LEN=16 octets, by stripping off the final 16 octets.

4.10.4. AES_192_CBC_HMAC_SHA_384

AES_192_CBC_HMAC_SHA_384 is based on AES_128_CBC_HMAC_SHA_256, but with the
following differences:

A 192 bit AES CBC key is used instead of 128.

SHA-384 is used in HMAC instead of SHA-256.

ENC_KEY_LEN is 24 octets instead of 16.

MAC_KEY_LEN is 24 octets instead of 16.

The length of the input key K is 48 octets instead of 32.

The HMAC SHA-384 value is truncated to T_LEN=24 octets instead of 16.

4.10.5. AES_256_CBC_HMAC_SHA_512

AES_256_CBC_HMAC_SHA_512 is based on AES_128_CBC_HMAC_SHA_256, but with the
following differences:

A 256 bit AES CBC key is used instead of 128.

SHA-512 is used in HMAC instead of SHA-256.

ENC_KEY_LEN is 32 octets instead of 16.

MAC_KEY_LEN is 32 octets instead of 16.

Section 4.10.2.1

Section 4.10.2.1

[JWE]

[RFC2104]
[SHS]

[RFC4868]

[NIST.800‑38A]

 TOC

 TOC

 TOC

 TOC

The length of the input key K is 64 octets instead of 32.

The HMAC SHA-512 value is truncated to T_LEN=32 octets instead of 16.

4.10.6. Plaintext Encryption with AES_CBC_HMAC_SHA2

The algorithm value A128CBC-HS256 is used as the alg value when using
AES_128_CBC_HMAC_SHA_256 with JWE. The algorithm value A192CBC-HS384 is used as the
alg value when using AES_192_CBC_HMAC_SHA_384 with JWE. The algorithm value
A256CBC-HS512 is used as the alg value when using AES_256_CBC_HMAC_SHA_512 with
JWE. The Additional Authenticated Data value used is the octets of the ASCII representation
of the Encoded JWE Header value. The JWE Initialization Vector value used is the IV value.

4.11. Plaintext Encryption with AES GCM

This section defines the specifics of encrypting the JWE Plaintext with Advanced Encryption
Standard (AES) in Galois/Counter Mode (GCM) using 128, 192, or
256 bit keys. The enc header parameter values A128GCM, A192GCM, or A256GCM are
respectively used in this case.

The CEK is used as the encryption key.

Use of an initialization vector of size 96 bits is REQUIRED with this algorithm.

The Additional Authenticated Data value used is the octets of the ASCII representation of the
Encoded JWE Header value.

The requested size of the Authentication Tag output MUST be 128 bits, regardless of the key
size.

The JWE Authentication Tag is set to be the Authentication Tag value produced by the
encryption. During decryption, the received JWE Authentication Tag is used as the
Authentication Tag value.

An example using this algorithm is shown in Appendix A.1 of .

5. Cryptographic Algorithms for JWK

A JSON Web Key (JWK) is a JSON data structure that represents a cryptographic key.
These keys can be either asymmetric or symmetric. They can hold both public and private
information about the key. This section defines the parameters for keys using the algorithms
specified by this document.

5.1. "kty" (Key Type) Parameter Values

The table below is the set of kty (key type) parameter values that are defined by this
specification for use in JWKs.

kty Parameter
Value

Key Type Implementation
Requirements

EC Elliptic Curve Recommended+

RSA RSA Required

oct Octet sequence (used to represent symmetric
keys)

Required

[AES] [NIST.800‑38D]

[JWE]

[JWK]

[DSS]

[RFC3447]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The use of "+" in the Implementation Requirements indicates that the requirement strength
is likely to be increased in a future version of the specification.

5.2. JWK Parameters for Elliptic Curve Keys

JWKs can represent Elliptic Curve keys. In this case, the kty member value MUST be
EC.

5.2.1. JWK Parameters for Elliptic Curve Public Keys

The following members MUST be present for Elliptic Curve public keys.

5.2.1.1. "crv" (Curve) Parameter

The crv (curve) member identifies the cryptographic curve used with the key. Curve values
from used by this specification are:

P-256
P-384
P-521

Additional crv values MAY be used, provided they are understood by implementations using
that Elliptic Curve key. The crv value is a case sensitive string.

5.2.1.2. "x" (X Coordinate) Parameter

The x (x coordinate) member contains the x coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian representation as an
octet sequence. The array representation MUST NOT be shortened to omit any leading zero
octets contained in the value. For instance, when representing 521 bit integers, the octet
sequence to be base64url encoded MUST contain 66 octets, including any leading zero
octets.

5.2.1.3. "y" (Y Coordinate) Parameter

The y (y coordinate) member contains the y coordinate for the elliptic curve point. It is
represented as the base64url encoding of the coordinate's big endian representation as an
octet sequence. The array representation MUST NOT be shortened to omit any leading zero
octets contained in the value. For instance, when representing 521 bit integers, the octet
sequence to be base64url encoded MUST contain 66 octets, including any leading zero
octets.

5.2.2. JWK Parameters for Elliptic Curve Private Keys

In addition to the members used to represent Elliptic Curve public keys, the following
member MUST be present to represent Elliptic Curve private keys.

5.2.2.1. "d" (ECC Private Key) Parameter

[DSS]

[DSS]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The d (ECC private key) member contains the Elliptic Curve private key value. It is
represented as the base64url encoding of the value's unsigned big endian representation as
an octet sequence. The array representation MUST NOT be shortened to omit any leading
zero octets. For instance, when representing 521 bit integers, the octet sequence to be
base64url encoded MUST contain 66 octets, including any leading zero octets.

5.3. JWK Parameters for RSA Keys

JWKs can represent RSA keys. In this case, the kty member value MUST be RSA.

5.3.1. JWK Parameters for RSA Public Keys

The following members MUST be present for RSA public keys.

5.3.1.1. "n" (Modulus) Parameter

The n (modulus) member contains the modulus value for the RSA public key. It is
represented as the base64url encoding of the value's unsigned big endian representation as
an octet sequence. The array representation MUST NOT be shortened to omit any leading
zero octets. For instance, when representing 2048 bit integers, the octet sequence to be
base64url encoded MUST contain 256 octets, including any leading zero octets.

5.3.1.2. "e" (Exponent) Parameter

The e (exponent) member contains the exponent value for the RSA public key. It is
represented as the base64url encoding of the value's unsigned big endian representation as
an octet sequence. The array representation MUST utilize the minimum number of octets to
represent the value. For instance, when representing the value 65537, the octet sequence to
be base64url encoded MUST consist of the three octets [1, 0, 1].

5.3.2. JWK Parameters for RSA Private Keys

In addition to the members used to represent RSA public keys, the following members are
used to represent RSA private keys. The parameter d is REQUIRED for RSA private keys. The
others enable optimizations and are RECOMMENDED. If any of the others are present then all
MUST be present, with the exception of oth, which MUST only be present when more than
two prime factors were used.

5.3.2.1. "d" (Private Exponent) Parameter

The d (private exponent) member contains the private exponent value for the RSA private
key. It is represented as the base64url encoding of the value's unsigned big endian
representation as an octet sequence. The array representation MUST NOT be shortened to
omit any leading zero octets. For instance, when representing 2048 bit integers, the octet
sequence to be base64url encoded MUST contain 256 octets, including any leading zero
octets.

5.3.2.2. "p" (First Prime Factor) Parameter

[RFC3447]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The p (first prime factor) member contains the first prime factor, a positive integer. It is
represented as the base64url encoding of the value's unsigned big endian representation as
an octet sequence.

5.3.2.3. "q" (Second Prime Factor) Parameter

The q (second prime factor) member contains the second prime factor, a positive integer. It
is represented as the base64url encoding of the value's unsigned big endian representation
as an octet sequence.

5.3.2.4. "dp" (First Factor CRT Exponent) Parameter

The dp (first factor CRT exponent) member contains the Chinese Remainder Theorem (CRT)
exponent of the first factor, a positive integer. It is represented as the base64url encoding of
the value's unsigned big endian representation as an octet sequence.

5.3.2.5. "dq" (Second Factor CRT Exponent) Parameter

The dq (second factor CRT exponent) member contains the Chinese Remainder Theorem
(CRT) exponent of the second factor, a positive integer. It is represented as the base64url
encoding of the value's unsigned big endian representation as an octet sequence.

5.3.2.6. "qi" (First CRT Coefficient) Parameter

The dp (first CRT coefficient) member contains the Chinese Remainder Theorem (CRT)
coefficient of the second factor, a positive integer. It is represented as the base64url
encoding of the value's unsigned big endian representation as an octet sequence.

5.3.2.7. "oth" (Other Primes Info) Parameter

The oth (other primes info) member contains an array of information about any third and
subsequent primes, should they exist. When only two primes have been used (the normal
case), this parameter MUST be omitted. When three or more primes have been used, the
number of array elements MUST be the number of primes used minus two. Each array
element MUST be an object with the following members:

5.3.2.7.1. "r" (Prime Factor)

The r (prime factor) parameter within an oth array member represents the value of a
subsequent prime factor, a positive integer. It is represented as the base64url encoding of
the value's unsigned big endian representation as an octet sequence.

5.3.2.7.2. "d" (Factor CRT Exponent)

The d (Factor CRT Exponent) parameter within an oth array member represents the CRT
exponent of the corresponding prime factor, a positive integer. It is represented as the
base64url encoding of the value's unsigned big endian representation as an octet sequence.

 TOC

 TOC

 TOC

 TOC

 TOC

5.3.2.7.3. "t" (Factor CRT Coefficient)

The t (factor CRT coefficient) parameter within an oth array member represents the CRT
coefficient of the corresponding prime factor, a positive integer. It is represented as the
base64url encoding of the value's unsigned big endian representation as an octet sequence.

5.4. JWK Parameters for Symmetric Keys

When the JWK kty member value is oct (octet sequence), the following member is used to
represent a symmetric key (or another key whose value is a single octet sequence):

5.4.1. "k" (Key Value) Parameter

The k (key value) member contains the value of the symmetric (or other single-valued) key.
It is represented as the base64url encoding of the octet sequence containing the key value.

6. IANA Considerations

The following registration procedure is used for all the registries established by this
specification.

Values are registered with a Specification Required after a two-week review
period on the [TBD]@ietf.org mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list for review and
comment, with an appropriate subject (e.g., "Request for access token type: example"). [[
Note to RFC-EDITOR: The name of the mailing list should be determined in consultation with
the IESG and IANA. Suggested name: jose-reg-review.]]

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

6.1. JSON Web Signature and Encryption Algorithms Registry

This specification establishes the IANA JSON Web Signature and Encryption Algorithms
registry for values of the JWS and JWE alg (algorithm) and enc (encryption method) header
parameters. The registry records the algorithm name, the algorithm usage locations from
the set alg and enc, implementation requirements, and a reference to the specification that
defines it. The same algorithm name MAY be registered multiple times, provided that the
sets of usage locations are disjoint.

The implementation requirements of an algorithm MAY be changed over time by the
Designated Experts(s) as the cryptographic landscape evolves, for instance, to change the
status of an algorithm to Deprecated, or to change the status of an algorithm from Optional
to Recommended+ or Required. Changes of implementation requirements are only
permitted on a Specification Required basis, with the new specification defining the revised
implementation requirements level.

[RFC5226]

 TOC

 TOC

6.1.1. Template

Algorithm Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Algorithm Usage Location(s):
The algorithm usage, which must be one or more of the values alg or enc.

Implementation Requirements:
The algorithm implementation requirements, which must be one the words
Required, Recommended, Optional, or Deprecated. Optionally, the word can be
followed by a "+" or "-". The use of "+" indicates that the requirement strength is
likely to be increased in a future version of the specification. The use of "-"
indicates that the requirement strength is likely to be decreased in a future
version of the specification.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

6.1.2. Initial Registry Contents

Algorithm Name: HS256
Algorithm Usage Location(s): alg
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: HS384
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: HS512
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: RS256
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: RS384
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: RS512
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Algorithm Name: ES256
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended+
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ES384
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ES512
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PS256
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PS384
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PS512
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: none
Algorithm Usage Location(s): alg
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: RSA1_5
Algorithm Usage Location(s): alg
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: RSA-OAEP
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A128KW
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A192KW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A256KW
Algorithm Usage Location(s): alg

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 3.1

Section 4.1

Section 4.1

Section 4.1

Section 4.1

Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: dir
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ECDH-ES
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended+
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ECDH-ES+A128KW
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ECDH-ES+A192KW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: ECDH-ES+A256KW
Algorithm Usage Location(s): alg
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A128GCMKW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A192GCMKW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A256GCMKW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PBES2-HS256+A128KW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PBES2-HS384+A192KW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: PBES2-HS512+A256KW
Algorithm Usage Location(s): alg
Implementation Requirements: Optional
Change Controller: IETF

Section 4.1

Section 4.1

Section 4.1

Section 4.1

Section 4.1

Section 4.1

Section 4.8

Section 4.8

Section 4.8

Section 4.9

Section 4.9

 TOC

 TOC

Specification Document(s): of [[this document]]

Algorithm Name: A128CBC-HS256
Algorithm Usage Location(s): enc
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A192CBC-HS384
Algorithm Usage Location(s): enc
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A256CBC-HS512
Algorithm Usage Location(s): enc
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A128GCM
Algorithm Usage Location(s): enc
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A192GCM
Algorithm Usage Location(s): enc
Implementation Requirements: Optional
Change Controller: IETF
Specification Document(s): of [[this document]]

Algorithm Name: A256GCM
Algorithm Usage Location(s): enc
Implementation Requirements: Recommended
Change Controller: IETF
Specification Document(s): of [[this document]]

6.2. JSON Web Key Types Registry

This specification establishes the IANA JSON Web Key Types registry for values of the JWK kty
(key type) parameter. The registry records the kty value, implementation requirements, and
a reference to the specification that defines it.

The implementation requirements of a key type MAY be changed over time by the
Designated Experts(s) as the cryptographic landscape evolves, for instance, to change the
status of a key type to Deprecated, or to change the status of a key type from Optional to
Recommended+ or Required. Changes of implementation requirements are only permitted
on a Specification Required basis, with the new specification defining the revised
implementation requirements level.

6.2.1. Registration Template

"kty" Parameter Value:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Implementation Requirements:

Section 4.9

Section 4.2

Section 4.2

Section 4.2

Section 4.2

Section 4.2

Section 4.2

 TOC

 TOC

 TOC

The key type implementation requirements, which must be one the words
Required, Recommended, Optional, or Deprecated. Optionally, the word can be
followed by a "+" or "-". The use of "+" indicates that the requirement strength is
likely to be increased in a future version of the specification. The use of "-"
indicates that the requirement strength is likely to be decreased in a future
version of the specification.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

6.2.2. Initial Registry Contents

This specification registers the values defined in .

"kty" Parameter Value: EC
Implementation Requirements: Recommended+
Change Controller: IETF
Specification Document(s): of [[this document]]

"kty" Parameter Value: RSA
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

"kty" Parameter Value: oct
Implementation Requirements: Required
Change Controller: IETF
Specification Document(s): of [[this document]]

6.3. JSON Web Key Parameters Registration

This specification registers the parameter names defined in Sections , , and in the
IANA JSON Web Key Parameters registry .

6.3.1. Registry Contents

Parameter Name: crv
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: x
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: y
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: d
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: n
Parameter Information Class: Public
Change Controller: IETF

Section 5.1

Section 5.2

Section 5.3

Section 5.4

5.2 5.3 5.4
[JWK]

Section 5.2.1.1

Section 5.2.1.2

Section 5.2.1.3

Section 5.2.2.1

 TOC

 TOC

Specification Document(s): of [[this document]]

Parameter Name: e
Parameter Information Class: Public
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: d
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: p
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: q
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: dp
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: dq
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: qi
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: oth
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

Parameter Name: k
Parameter Information Class: Private
Change Controller: IETF
Specification Document(s): of [[this document]]

6.4. Registration of JWE Header Parameter Names

This specification registers the Header Parameter Names defined in ,
, and in the IANA JSON Web Signature and Encryption Header

Parameters registry .

6.4.1. Registry Contents

Header Parameter Name: epk
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

Header Parameter Name: apu
Header Parameter Usage Location(s): JWE
Change Controller: IETF

Section 5.3.1.1

Section 5.3.1.2

Section 5.3.2.1

Section 5.3.2.2

Section 5.3.2.3

Section 5.3.2.4

Section 5.3.2.5

Section 5.3.2.6

Section 5.3.2.7

Section 5.4.1

Section 4.7.1
Section 4.8.1 Section 4.9.1

[JWS]

Section 4.7.1.1

 TOC

Specification Document(s): of [[this document]]

Header Parameter Name: apv
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

Header Parameter Name: iv
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

Header Parameter Name: tag
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

Header Parameter Name: p2s
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

Header Parameter Name: p2c
Header Parameter Usage Location(s): JWE
Change Controller: IETF
Specification Document(s): of [[this document]]

7. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document, but some significant considerations are listed here.

The security considerations in , , , , , ,
, , , , , ,

, and apply to this specification.

Eventually the algorithms and/or key sizes currently described in this specification will no
longer be considered sufficiently secure and will be removed. Therefore, implementers and
deployments must be prepared for this eventuality.

Many algorithms have associated security considerations related to key lifetimes and/or the
number of times that a key may be used. Those security considerations continue to apply
when using those algorithms with JOSE data structures.

Algorithms of matching strengths should be used together whenever possible. For instance,
when AES Key Wrap is used with a given key size, using the same key size is recommended
when AES GCM is also used.

While Section 8 of RFC 3447 explicitly calls for people not to adopt RSASSA-
PKCS-v1_5 for new applications and instead requests that people transition to RSASSA-PSS,
this specification does include RSASSA-PKCS-v1_5, for interoperability reasons, because it
commonly implemented.

Keys used with RSAES-PKCS1-v1_5 must follow the constraints in Section 7.2 of RFC 3447
. In particular, keys with a low public key exponent value must not be used.

Keys used with AES GCM must follow the constraints in Section 8.3 of ,
which states: "The total number of invocations of the authenticated encryption function shall
not exceed 2^32, including all IV lengths and all instances of the authenticated encryption
function with the given key". In accordance with this rule, AES GCM MUST NOT be used with
the same key encryption key or with the same direct encryption key more than 2^32 times.

Plaintext JWSs (JWSs that use the alg value none) provide no integrity protection. Thus, they

Section 4.7.1.2

Section 4.7.1.3

Section 4.8.1.1

Section 4.8.1.2

Section 4.9.1.1

Section 4.9.1.2

[AES] [DSS] [JWE] [JWK] [JWS] [NIST.800‑38A]
[NIST.800‑38D] [NIST.800‑56A] [RFC2104] [RFC3394] [RFC3447] [RFC5116]
[RFC6090] [SHS]

[RFC3447]

[RFC3447]

[NIST.800‑38D]

 TOC

 TOC

 TOC

 TOC

 TOC

must only be used in contexts where the payload is secured by means other than a digital
signature or MAC value, or need not be secured.

Receiving agents that validate signatures and sending agents that encrypt messages need
to be cautious of cryptographic processing usage when validating signatures and encrypting
messages using keys larger than those mandated in this specification. An attacker could
send certificates with keys that would result in excessive cryptographic processing, for
example, keys larger than those mandated in this specification, which could swamp the
processing element. Agents that use such keys without first validating the certificate to a
trust anchor are advised to have some sort of cryptographic resource management system
to prevent such attacks.

7.1. Reusing Key Material when Encrypting Keys

It is NOT RECOMMENDED to reuse the same key material (Key Encryption Key, Content
Encryption Key, Initialization Vector, etc.) to encrypt multiple JWK or JWK Set objects, or to
encrypt the same JWK or JWK Set object multiple times. One suggestion for preventing re-use
is to always generate a new set key material for each encryption operation, based on the
considerations noted in this document as well as from .

7.2. Password Considerations

While convenient for end users, passwords are vulnerable to a number of attacks. To help
mitigate some of these limitations, this document applies principles from to
derive cryptographic keys from user-supplied passwords.

However, the strength of the password still has a significant impact. A high-entry password
has greater resistance to dictionary attacks. contains guidelines for
estimating password entropy, which can help applications and users generate stronger
passwords.

An ideal password is one that is as large (or larger) than the derived key length but less than
the PRF's block size. Passwords larger than the PRF's block size are first hashed, which
reduces an attacker's effective search space to the length of the hash algorithm (32 octets
for HMAC SHA-256). It is RECOMMENDED that the password be no longer than 64 octets long
for PBES2-HS512+A256KW.

Still, care needs to be taken in where and how password-based encryption is used. Such
algorithms MUST NOT be used where the attacker can make an indefinite number of
attempts to circumvent the protection.

8. Internationalization Considerations

Passwords obtained from users are likely to require preparation and normalization to account
for differences of octet sequences generated by different input devices, locales, etc. It is
RECOMMENDED that applications to perform the steps outlined in

 to prepare a password supplied directly by a user
before performing key derivation and encryption.

9. References

9.1. Normative References

[AES] National Institute of Standards and Technology (NIST), “Advanced Encryption Standard (AES),” FIPS PUB
197, November 2001.

[RFC4086]

[RFC2898]

[NIST‑800‑63‑1]

[I‑D.melnikov‑precis‑saslprepbis]

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

 TOC

[DSS] National Institute of Standards and Technology, “Digital Signature Standard (DSS),” FIPS PUB 186-4,
July 2013.

[I-D.melnikov-
precis-
saslprepbis]

Saint-Andre, P. and A. Melnikov, “Preparation and Comparison of Internationalized Strings
Representing Simple User Names and Passwords,” draft-melnikov-precis-saslprepbis-04 (work in
progress), September 2012 (TXT).

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” draft-ietf-jose-json-web-
encryption (work in progress), September 2013 (HTML).

[JWK] Jones, M., “JSON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), September 2013 (HTML).

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” draft-ietf-jose-json-web-signature
(work in progress), September 2013 (HTML).

[NIST.800-
38A]

National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of
Operation,” NIST PUB 800-38A, December 2001.

[NIST.800-38D] National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC,” NIST PUB 800-38D, December 2001.

[NIST.800-
56A]

National Institute of Standards and Technology (NIST), “Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography,” NIST Special Publication 800-56A,
Revision 2, May 2013.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,”
RFC 2104, February 1997 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2898] Kaliski, B., “PKCS #5: Password-Based Cryptography Specification Version 2.0,” RFC 2898,
September 2000 (TXT).

[RFC3394] Schaad, J. and R. Housley, “Advanced Encryption Standard (AES) Key Wrap Algorithm,” RFC 3394,
September 2002 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086,
June 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC4868] Kelly, S. and S. Frankel, “Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec,”
RFC 4868, May 2007 (TXT).

[RFC5116] McGrew, D., “An Interface and Algorithms for Authenticated Encryption,” RFC 5116, January 2008
(TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC6090] McGrew, D., Igoe, K., and M. Salter, “Fundamental Elliptic Curve Cryptography Algorithms,” RFC 6090,
February 2011 (TXT).

[SHS] National Institute of Standards and Technology, “Secure Hash Standard (SHS),” FIPS PUB 180-3,
October 2008.

[USASCII] American National Standards Institute, “Coded Character Set -- 7-bit American Standard Code for Information
Interchange,” ANSI X3.4, 1986.

9.2. Informative References

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[I-D.mcgrew-
aead-aes-cbc-
hmac-sha2]

McGrew, D., Foley, J., and K. Paterson, “Authenticated Encryption with AES-CBC and HMAC-SHA ,”
draft-mcgrew-aead-aes-cbc-hmac-sha2-02 (work in progress), July 2013 (TXT).

[I-D.miller-jose-
jwe-protected-
jwk]

Miller, M., “Using JavaScript Object Notation (JSON) Web Encryption (JWE) for Protecting JSON
Web Key (JWK) Objects,” draft-miller-jose-jwe-protected-jwk-02 (work in progress), June 2013 (TXT).

[I-D.rescorla-
jsms]

Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in
progress), March 2011 (TXT).

[JCA] Oracle, “Java Cryptography Architecture,” 2011.

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” January 2011.

[NIST-800-63-1] National Institute of Standards and Technology (NIST), “Electronic Authentication Guideline,”
NIST 800-63-1, December 2011.

[RFC2631] Rescorla, E., “Diffie-Hellman Key Agreement Method,” RFC 2631, June 1999 (TXT).

[RFC3275] Eastlake, D., Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” RFC 3275, March 2002 (TXT).

[RFC3447] Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” RFC 3447, February 2003 (TXT).

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,”
RFC 4122, July 2005 (TXT, HTML, XML).

[W3C.CR-xmldsig-
core2-20120124]

Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P., Hirsch, F., Cantor, S., and T. Roessler, “XML Signature
Syntax and Processing Version 2.0,” World Wide Web Consortium CR CR-xmldsig-core2-20120124,

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://tools.ietf.org/html/draft-melnikov-precis-saslprepbis-04
http://www.ietf.org/internet-drafts/draft-melnikov-precis-saslprepbis-04.txt
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2898
http://www.rfc-editor.org/rfc/rfc2898.txt
http://tools.ietf.org/html/rfc3394
http://www.rfc-editor.org/rfc/rfc3394.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc4868
http://www.rfc-editor.org/rfc/rfc4868.txt
http://tools.ietf.org/html/rfc5116
http://www.rfc-editor.org/rfc/rfc5116.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc6090
http://www.rfc-editor.org/rfc/rfc6090.txt
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://developers.facebook.com/docs/authentication/canvas
http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-02
http://www.ietf.org/internet-drafts/draft-mcgrew-aead-aes-cbc-hmac-sha2-02.txt
http://tools.ietf.org/html/draft-miller-jose-jwe-protected-jwk-02
http://www.ietf.org/internet-drafts/draft-miller-jose-jwe-protected-jwk-02.txt
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://download.java.net/jdk7/docs/technotes/guides/security/SunProviders.html
http://jsonenc.info/enc/1.0/
http://jsonenc.info/jss/1.0/
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
mailto:ekr@rtfm.com
http://tools.ietf.org/html/rfc2631
http://www.rfc-editor.org/rfc/rfc2631.txt
http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124

 TOC

January 2012 (HTML).

[W3C.CR-xmlenc-
core1-20120313]

Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20120313, March 2012 (HTML).

[W3C.REC-
xmlenc-core-
20021210]

Eastlake, D. and J. Reagle, “XML Encryption Syntax and Processing,” World Wide Web Consortium
Recommendation REC-xmlenc-core-20021210, December 2002 (HTML).

Appendix A. Digital Signature/MAC Algorithm Identifier Cross-Reference

This appendix contains a table cross-referencing the digital signature and MAC alg
(algorithm) values used in this specification with the equivalent identifiers used by other
standards and software packages. See [RFC3275],
[W3C.CR‑xmldsig‑core2‑20120124], and [JCA] for more
information about the names defined by those documents.

Algorithm JWS XML DSIG JCA OID

HMAC using
SHA-256
hash
algorithm

HS256 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha256

HmacSHA256 1.2.840.113549.2.9

HMAC using
SHA-384
hash
algorithm

HS384 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha384

HmacSHA384 1.2.840.113549.2.10

HMAC using
SHA-512
hash
algorithm

HS512 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha512

HmacSHA512 1.2.840.113549.2.11

RSASSA-
PKCS-v1_5
using SHA-
256 hash
algorithm

RS256
http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256 SHA256withRSA 1.2.840.113549.1.1.11

RSASSA-
PKCS-v1_5
using SHA-
384 hash
algorithm

RS384
http://www.w3.org/2001/04/xmldsig-
more#rsa-sha384 SHA384withRSA 1.2.840.113549.1.1.12

RSASSA-
PKCS-v1_5
using SHA-
512 hash
algorithm

RS512
http://www.w3.org/2001/04/xmldsig-
more#rsa-sha512 SHA512withRSA 1.2.840.113549.1.1.13

ECDSA using
P-256 curve
and SHA-256
hash
algorithm

ES256
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha256 SHA256withECDSA 1.2.840.10045.4.3.2

ECDSA using
P-384 curve
and SHA-384
hash
algorithm

ES384
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha384 SHA384withECDSA 1.2.840.10045.4.3.3

ECDSA using
P-521 curve
and SHA-512
hash
algorithm

ES512
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha512 SHA512withECDSA 1.2.840.10045.4.3.4

RSASSA-PSS
using SHA-
256 hash
algorithm and
MGF1 mask

PS256

XML DSIG XML DSIG 2.0
Java Cryptography Architecture

http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210

 TOC

generation
function with
SHA-256

RSASSA-PSS
using SHA-
384 hash
algorithm and
MGF1 mask
generation
function with
SHA-384

PS384

RSASSA-PSS
using SHA-
512 hash
algorithm and
MGF1 mask
generation
function with
SHA-512

PS512

Appendix B. Encryption Algorithm Identifier Cross-Reference

This appendix contains a table cross-referencing the alg (algorithm) and enc (encryption
method) values used in this specification with the equivalent identifiers used by other
standards and software packages. See [W3C.REC‑xmlenc‑core‑20021210],

 [W3C.CR‑xmlenc‑core1‑20120313], and
 [JCA] for more information about the names defined by those documents.

For the composite algorithms A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512, the
corresponding AES CBC algorithm identifiers are listed.

Algorithm JWE XML ENC JCA

RSAES-PKCS1-V1_5 RSA1_5 http://www.w3.org/2001/04/xmlenc#rsa-1_5 RSA/ECB/PKCS1Padding

RSAES using
Optimal
Asymmetric
Encryption Padding
(OAEP)

RSA-
OAEP

http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p

RSA/ECB/OAEPWithSHA-
1AndMGF1Padding

Elliptic Curve Diffie-
Hellman Ephemeral
Static

ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-
ES

Advanced
Encryption
Standard (AES) Key
Wrap Algorithm
using 128 bit keys

A128KW
http://www.w3.org/2001/04/xmlenc#kw-
aes128

AES Key Wrap
Algorithm using 192
bit keys

A192KW
http://www.w3.org/2001/04/xmlenc#kw-
aes192

AES Key Wrap
Algorithm using 256
bit keys

A256KW
http://www.w3.org/2001/04/xmlenc#kw-
aes256

AES in Cipher Block
Chaining (CBC)
mode with PKCS #5
padding using 128
bit keys

A128CBC-
HS256

http://www.w3.org/2001/04/xmlenc#aes128-
cbc AES/CBC/PKCS5Padding

AES in CBC mode
with PKCS #5
padding using 192
bit keys

A192CBC-
HS384

http://www.w3.org/2001/04/xmlenc#aes192-
cbc

AES/CBC/PKCS5Padding

XML Encryption
XML Encryption 1.1 Java Cryptography
Architecture

 TOC

 TOC

AES in CBC mode
with PKCS #5
padding using 256
bit keys

A256CBC-
HS512

http://www.w3.org/2001/04/xmlenc#aes256-
cbc

AES/CBC/PKCS5Padding

AES in
Galois/Counter
Mode (GCM) using
128 bit keys

A128GCM http://www.w3.org/2009/xmlenc11#aes128-
gcm

AES/GCM/NoPadding

AES GCM using 192
bit keys

A192GCM http://www.w3.org/2009/xmlenc11#aes192-
gcm

AES/GCM/NoPadding

AES GCM using 256
bit keys

A256GCM http://www.w3.org/2009/xmlenc11#aes256-
gcm

AES/GCM/NoPadding

Appendix C. Test Cases for AES_CBC_HMAC_SHA2 Algorithms

The following test cases can be used to validate implementations of the
AES_CBC_HMAC_SHA2 algorithms defined in . They are also intended to
correspond to test cases that may appear in a future version of

, demonstrating that the cryptographic
computations performed are the same.

The variable names are those defined in . All values are hexadecimal.

C.1. Test Cases for AES_128_CBC_HMAC_SHA_256

AES_128_CBC_HMAC_SHA_256

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

 ENC_KEY = 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = c8 0e df a3 2d df 39 d5 ef 00 c0 b4 68 83 42 79
 a2 e4 6a 1b 80 49 f7 92 f7 6b fe 54 b9 03 a9 c9
 a9 4a c9 b4 7a d2 65 5c 5f 10 f9 ae f7 14 27 e2
 fc 6f 9b 3f 39 9a 22 14 89 f1 63 62 c7 03 23 36
 09 d4 5a c6 98 64 e3 32 1c f8 29 35 ac 40 96 c8
 6e 13 33 14 c5 40 19 e8 ca 79 80 df a4 b9 cf 1b
 38 4c 48 6f 3a 54 c5 10 78 15 8e e5 d7 9d e5 9f
 bd 34 d8 48 b3 d6 95 50 a6 76 46 34 44 27 ad e5
 4b 88 51 ff b5 98 f7 f8 00 74 b9 47 3c 82 e2 db

Section 4.10

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

Section 4.10

 TOC

 TOC

 M = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4
 e6 e5 45 82 47 65 15 f0 ad 9f 75 a2 b7 1c 73 ef

 T = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4

C.2. Test Cases for AES_192_CBC_HMAC_SHA_384

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17

 ENC_KEY = 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27
 28 29 2a 2b 2c 2d 2e 2f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = ea 65 da 6b 59 e6 1e db 41 9b e6 2d 19 71 2a e5
 d3 03 ee b5 00 52 d0 df d6 69 7f 77 22 4c 8e db
 00 0d 27 9b dc 14 c1 07 26 54 bd 30 94 42 30 c6
 57 be d4 ca 0c 9f 4a 84 66 f2 2b 22 6d 17 46 21
 4b f8 cf c2 40 0a dd 9f 51 26 e4 79 66 3f c9 0b
 3b ed 78 7a 2f 0f fc bf 39 04 be 2a 64 1d 5c 21
 05 bf e5 91 ba e2 3b 1d 74 49 e5 32 ee f6 0a 9a
 c8 bb 6c 6b 01 d3 5d 49 78 7b cd 57 ef 48 49 27
 f2 80 ad c9 1a c0 c4 e7 9c 7b 11 ef c6 00 54 e3

 M = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
 75 16 80 39 cc c7 33 d7 45 94 f8 86 b3 fa af d4
 86 f2 5c 71 31 e3 28 1e 36 c7 a2 d1 30 af de 57

 T = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
 75 16 80 39 cc c7 33 d7

C.3. Test Cases for AES_256_CBC_HMAC_SHA_512

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

 TOC

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 ENC_KEY = 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = 4a ff aa ad b7 8c 31 c5 da 4b 1b 59 0d 10 ff bd
 3d d8 d5 d3 02 42 35 26 91 2d a0 37 ec bc c7 bd
 82 2c 30 1d d6 7c 37 3b cc b5 84 ad 3e 92 79 c2
 e6 d1 2a 13 74 b7 7f 07 75 53 df 82 94 10 44 6b
 36 eb d9 70 66 29 6a e6 42 7e a7 5c 2e 08 46 a1
 1a 09 cc f5 37 0d c8 0b fe cb ad 28 c7 3f 09 b3
 a3 b7 5e 66 2a 25 94 41 0a e4 96 b2 e2 e6 60 9e
 31 e6 e0 2c c8 37 f0 53 d2 1f 37 ff 4f 51 95 0b
 be 26 38 d0 9d d7 a4 93 09 30 80 6d 07 03 b1 f6

 M = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
 2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5
 fd 30 a5 65 c6 16 ff b2 f3 64 ba ec e6 8f c4 07
 53 bc fc 02 5d de 36 93 75 4a a1 f5 c3 37 3b 9c

 T = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
 2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5

Appendix D. Example ECDH-ES Key Agreement Computation

This example uses ECDH-ES Key Agreement and the Concat KDF to derive the Content
Encryption Key (CEK) in the manner described in . In this example, the ECDH-ES
Direct Key Agreement mode (alg value ECDH-ES) is used to produce an agreed upon key for
AES GCM with 128 bit keys (enc value A128GCM).

In this example, a sender Alice is encrypting content to a recipient Bob. The sender (Alice)
generates an ephemeral key for the key agreement computation. Alice's ephemeral key (in
JWK format) used for the key agreement computation in this example (including the private
part) is:

 {"kty":"EC",
 "crv":"P-256",
 "x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
 "y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps",
 "d":"0_NxaRPUMQoAJt50Gz8YiTr8gRTwyEaCumd-MToTmIo"
 }

The recipient's (Bob's) key (in JWK format) used for the key agreement computation in this
example (including the private part) is:

Section 4.7

 {"kty":"EC",
 "crv":"P-256",
 "x":"weNJy2HscCSM6AEDTDg04biOvhFhyyWvOHQfeF_PxMQ",
 "y":"e8lnCO-AlStT-NJVX-crhB7QRYhiix03illJOVAOyck",
 "d":"VEmDZpDXXK8p8N0Cndsxs924q6nS1RXFASRl6BfUqdw"
 }

Header parameter values used in this example are as follows. In this example, the apu
(agreement PartyUInfo) parameter value is the base64url encoding of the UTF-8 string "Alice"
and the apv (agreement PartyVInfo) parameter value is the base64url encoding of the UTF-8
string "Bob". The epk parameter is used to communicate the sender's (Alice's) ephemeral
public key value to the recipient (Bob).

 {"alg":"ECDH-ES",
 "enc":"A128GCM",
 "apu":"QWxpY2U",
 "apv":"Qm9i",
 "epk":
 {"kty":"EC",
 "crv":"P-256",
 "x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
 "y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps"
 }
 }

The resulting Concat KDF parameter values are:

Z
This is set to the ECDH-ES key agreement output. (This value is often not directly
exposed by libraries, due to NIST security requirements, and only serves as an
input to a KDF.) In this example, Z is the octet sequence: [158, 86, 217, 29, 129,
113, 53, 211, 114, 131, 66, 131, 191, 132, 38, 156, 251, 49, 110, 163, 218, 128,
106, 72, 246, 218, 167, 121, 140, 254, 144, 196].

keydatalen
This value is 128 - the number of bits in the desired output key (because A128GCM
uses a 128 bit key).

AlgorithmID
This is set to the octets representing the UTF-8 string "A128GCM" - [65, 49, 50, 56,
71, 67, 77].

PartyUInfo
This is set to the octets representing the 32 bit big endian value 5 - [0, 0, 0, 5] -
the number of octets in the PartyUInfo content "Alice", followed, by the octets
representing the UTF-8 string "Alice" - [65, 108, 105, 99, 101].

PartyVInfo
This is set to the octets representing the 32 bit big endian value 3 - [0, 0, 0, 3] -
the number of octets in the PartyUInfo content "Bob", followed, by the octets
representing the UTF-8 string "Bob" - [66, 111, 98].

SuppPubInfo
This is set to the octets representing the 32 bit big endian value 128 - [0, 0, 0,
128] - the keydatalen value.

SuppPrivInfo
This is set to the empty octet sequence.

Concatenating the parameters AlgorithmID through SuppPubInfo results in an otherInfo value
of:
[65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105, 99, 101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0,
128]

Concatenating the round number 1 ([0, 0, 0, 1]), Z, and the otherInfo value results in the
Concat KDF round 1 hash input of:
[0, 0, 0, 1,
158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132, 38, 156, 251, 49, 110, 163,
218, 128, 106, 72, 246, 218, 167, 121, 140, 254, 144, 196,
65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105, 99, 101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0,
128]

[NIST.800‑56A]

 TOC

 TOC

The resulting derived key, which is the first 128 bits of the round 1 hash output is:
[186, 193, 41, 192, 82, 2, 254, 170, 230, 4, 76, 103, 180, 92, 49, 48]

The base64url encoded representation of this derived key is:

 usEpwFIC_qrmBExntFwxMA

Appendix E. Acknowledgements

Solutions for signing and encrypting JSON content were previously explored by
 [MagicSignatures], [JSS],

[CanvasApp], [JSE], and
 [I‑D.rescorla‑jsms], all of which influenced this draft.

The
[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2] specification, upon which the AES_CBC_HMAC_SHA2
algorithms are based, was written by David A. McGrew and Kenny Paterson. The test cases
for AES_CBC_HMAC_SHA2 are based upon those for

 by John Foley.

Matt Miller wrote
 [I‑D.miller‑jose‑jwe‑protected‑jwk], which the

password-based encryption content of this draft is based upon.

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Dirk Balfanz, Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Yaron Y.
Goland, Dick Hardt, Jeff Hodges, Edmund Jay, James Manger, Matt Miller, Tony Nadalin, Axel
Nennker, John Panzer, Emmanuel Raviart, Nat Sakimura, Jim Schaad, Hannes Tschofenig,
and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix F. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-15

Changed statements about rejecting JWSs to statements about validation failing,
addressing issue #35.
Stated that changes of implementation requirements are only permitted on a
Specification Required basis, addressing issue #38.
Made oct a required key type, addressing issue #40.
Updated the example ECDH-ES key agreement values.
Changes to address editorial and minor issues #34, #37, #49, #123, #124,
#125, #130, #132, #133, #138, #139, #140, #142, #143, #144, #145, #148,
#149, #150, and #162.

-14

Removed PBKDF2 key type and added p2s and p2c header parameters for use
with the PBES2 algorithms.
Made the RSA private key parameters that are there to enable optimizations be
RECOMMENDED rather than REQUIRED.
Added algorithm identifiers for AES algorithms using 192 bit keys and for
RSASSA-PSS using HMAC SHA-384.
Added security considerations about key lifetimes, addressing issue #18.
Added an example ECDH-ES key agreement computation.

Magic
Signatures JSON Simple Sign Canvas Applications

JSON Simple Encryption JavaScript Message Security
Format

Authenticated Encryption with AES-CBC and HMAC-SHA

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

Using JavaScript Object Notation (JSON) Web Encryption (JWE) for
Protecting JSON Web Key (JWK) Objects

-13

Added key encryption with AES GCM as specified in draft-jones-jose-aes-gcm-
key-wrap-01, addressing issue #13.
Added security considerations text limiting the number of times that an AES
GCM key can be used for key encryption or direct encryption, per Section 8.3 of
NIST SP 800-38D, addressing issue #28.
Added password-based key encryption as specified in draft-miller-jose-jwe-
protected-jwk-02.

-12

In the Direct Key Agreement case, the Concat KDF AlgorithmID is set to the
octets of the UTF-8 representation of the enc header parameter value.
Restored the apv (agreement PartyVInfo) parameter.
Moved the epk, apu, and apv Header Parameter definitions to be with the
algorithm descriptions that use them.
Changed terminology from "block encryption" to "content encryption".

-11

Removed the Encrypted Key value from the AAD computation since it is already
effectively integrity protected by the encryption process. The AAD value now only
contains the representation of the JWE Encrypted Header.
Removed apv (agreement PartyVInfo) since it is no longer used.
Added more information about the use of PartyUInfo during key agreement.
Use the keydatalen as the SuppPubInfo value for the Concat KDF when doing key
agreement, as RFC 2631 does.
Added algorithm identifiers for RSASSA-PSS with SHA-256 and SHA-512.
Added a Parameter Information Class value to the JSON Web Key Parameters
registry, which registers whether the parameter conveys public or private
information.

-10

Changed the JWE processing rules for multiple recipients so that a single AAD
value contains the header parameters and encrypted key values for all the
recipients, enabling AES GCM to be safely used for multiple recipients.

-09

Expanded the scope of the JWK parameters to include private and symmetric key
representations, as specified by draft-jones-jose-json-private-and-symmetric-
key-00.
Changed term "JWS Secured Input" to "JWS Signing Input".
Changed from using the term "byte" to "octet" when referring to 8 bit values.
Specified that AES Key Wrap uses the default initial value specified in Section
2.2.3.1 of RFC 3394. This addressed issue #19.
Added Key Management Mode definitions to terminology section and used the
defined terms to provide clearer key management instructions. This addressed
issue #5.
Replaced A128CBC+HS256 and A256CBC+HS512 with A128CBC-HS256 and
A256CBC-HS512. The new algorithms perform the same cryptographic
computations as , but with the
Initialization Vector and Authentication Tag values remaining separate from the
Ciphertext value in the output representation. Also deleted the header
parameters epu (encryption PartyUInfo) and epv (encryption PartyVInfo), since
they are no longer used.
Changed from using the term "Integrity Value" to "Authentication Tag".

-08

Changed the name of the JWK key type parameter from alg to kty.
Replaced uses of the term "AEAD" with "Authenticated Encryption", since the
term AEAD in the RFC 5116 sense implied the use of a particular data
representation, rather than just referring to the class of algorithms that perform
authenticated encryption with associated data.
Applied editorial improvements suggested by Jeff Hodges. Many of these

[I‑D.mcgrew‑aead‑aes‑cbc‑hmac‑sha2]

simplified the terminology used.
Added seriesInfo information to Internet Draft references.

-07

Added a data length prefix to PartyUInfo and PartyVInfo values.
Changed the name of the JWK RSA modulus parameter from mod to n and the
name of the JWK RSA exponent parameter from xpo to e, so that the identifiers
are the same as those used in RFC 3447.
Made several local editorial changes to clean up loose ends left over from to the
decision to only support block encryption methods providing integrity.

-06

Removed the int and kdf parameters and defined the new composite
Authenticated Encryption algorithms A128CBC+HS256 and A256CBC+HS512 to
replace the former uses of AES CBC, which required the use of separate integrity
and key derivation functions.
Included additional values in the Concat KDF calculation -- the desired output
size and the algorithm value, and optionally PartyUInfo and PartyVInfo values.
Added the optional header parameters apu (agreement PartyUInfo), apv
(agreement PartyVInfo), epu (encryption PartyUInfo), and epv (encryption
PartyVInfo).
Changed the name of the JWK RSA exponent parameter from exp to xpo so as
to allow the potential use of the name exp for a future extension that might
define an expiration parameter for keys. (The exp name is already used for this
purpose in the JWT specification.)
Applied changes made by the RFC Editor to RFC 6749's registry language to this
specification.

-05

Support both direct encryption using a shared or agreed upon symmetric key,
and the use of a shared or agreed upon symmetric key to key wrap the CMK.
Specifically, added the alg values dir, ECDH-ES+A128KW, and ECDH-ES+A256KW
to finish filling in this set of capabilities.
Updated open issues.

-04

Added text requiring that any leading zero bytes be retained in base64url
encoded key value representations for fixed-length values.
Added this language to Registration Templates: "This name is case sensitive.
Names that match other registered names in a case insensitive manner
SHOULD NOT be accepted."
Described additional open issues.
Applied editorial suggestions.

-03

Always use a 128 bit "authentication tag" size for AES GCM, regardless of the key
size.
Specified that use of a 128 bit IV is REQUIRED with AES CBC. It was previously
RECOMMENDED.
Removed key size language for ECDSA algorithms, since the key size is implied
by the algorithm being used.
Stated that the int key size must be the same as the hash output size (and not
larger, as was previously allowed) so that its size is defined for key generation
purposes.
Added the kdf (key derivation function) header parameter to provide crypto
agility for key derivation. The default KDF remains the Concat KDF with the SHA-
256 digest function.
Clarified that the mod and exp values are unsigned.
Added Implementation Requirements columns to algorithm tables and
Implementation Requirements entries to algorithm registries.
Changed AES Key Wrap to RECOMMENDED.
Moved registries JSON Web Signature and Encryption Header Parameters and
JSON Web Signature and Encryption Type Values to the JWS specification.

 TOC

Moved JSON Web Key Parameters registry to the JWK specification.
Changed registration requirements from RFC Required to Specification Required
with Expert Review.
Added Registration Template sections for defined registries.
Added Registry Contents sections to populate registry values.
No longer say "the UTF-8 representation of the JWS Secured Input (which is the
same as the ASCII representation)". Just call it "the ASCII representation of the
JWS Secured Input".
Added "Collision Resistant Namespace" to the terminology section.
Numerous editorial improvements.

-02

For AES GCM, use the "additional authenticated data" parameter to provide
integrity for the header, encrypted key, and ciphertext and use the resulting
"authentication tag" value as the JWE Authentication Tag.
Defined minimum required key sizes for algorithms without specified key sizes.
Defined KDF output key sizes.
Specified the use of PKCS #5 padding with AES CBC.
Generalized text to allow key agreement to be employed as an alternative to key
wrapping or key encryption.
Clarified that ECDH-ES is a key agreement algorithm.
Required implementation of AES-128-KW and AES-256-KW.
Removed the use of A128GCM and A256GCM for key wrapping.
Removed A512KW since it turns out that it's not a standard algorithm.
Clarified the relationship between typ header parameter values and MIME types.
Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.
Established registries: JSON Web Signature and Encryption Header Parameters,
JSON Web Signature and Encryption Algorithms, JSON Web Signature and
Encryption "typ" Values, JSON Web Key Parameters, and JSON Web Key Algorithm
Families.
Moved algorithm-specific definitions from JWK to JWA.
Reformatted to give each member definition its own section heading.

-01

Moved definition of "alg":"none" for JWSs here from the JWT specification since
this functionality is likely to be useful in more contexts that just for JWTs.
Added Advanced Encryption Standard (AES) Key Wrap Algorithm using 512 bit
keys (A512KW).
Added text "Alternatively, the Encoded JWS Signature MAY be base64url decoded
to produce the JWS Signature and this value can be compared with the
computed HMAC value, as this comparison produces the same result as
comparing the encoded values".
Corrected the Magic Signatures reference.
Made other editorial improvements suggested by JOSE working group
participants.

-00

Created the initial IETF draft based upon draft-jones-json-web-signature-04 and
draft-jones-json-web-encryption-02 with no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Author's Address

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

mailto:mbj@microsoft.com
http://self-issued.info/

	JSON Web Algorithms (JWA) draft-ietf-jose-json-web-algorithms-15
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	2.1. Terms Incorporated from the JWS Specification
	2.2. Terms Incorporated from the JWE Specification
	2.3. Terms Incorporated from the JWK Specification
	2.4. Defined Terms
	3. Cryptographic Algorithms for JWS
	3.1. "alg" (Algorithm) Header Parameter Values for JWS
	3.2. HMAC with SHA-2 Functions
	3.3. Digital Signature with RSASSA-PKCS1-V1_5
	3.4. Digital Signature with ECDSA
	3.5. Digital Signature with RSASSA-PSS
	3.6. Using the Algorithm "none"
	4. Cryptographic Algorithms for JWE
	4.1. "alg" (Algorithm) Header Parameter Values for JWE
	4.2. "enc" (Encryption Method) Header Parameter Values for JWE
	4.3. Key Encryption with RSAES-PKCS1-V1_5
	4.4. Key Encryption with RSAES OAEP
	4.5. Key Wrapping with AES Key Wrap
	4.6. Direct Encryption with a Shared Symmetric Key
	4.7. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES)
	4.7.1. Header Parameters Used for ECDH Key Agreement
	4.7.1.1. "epk" (Ephemeral Public Key) Header Parameter
	4.7.1.2. "apu" (Agreement PartyUInfo) Header Parameter
	4.7.1.3. "apv" (Agreement PartyVInfo) Header Parameter
	4.7.2. Key Derivation for ECDH Key Agreement
	4.8. Key Encryption with AES GCM
	4.8.1. Header Parameters Used for AES GCM Key Encryption
	4.8.1.1. "iv" (Initialization Vector) Header Parameter
	4.8.1.2. "tag" (Authentication Tag) Header Parameter
	4.9. Key Encryption with PBES2
	4.9.1. Header Parameters Used for PBES2 Key Encryption
	4.9.1.1. "p2s" (PBES2 salt) Parameter
	4.9.1.2. "p2c" (PBES2 count) Parameter
	4.10. AES_CBC_HMAC_SHA2 Algorithms
	4.10.1. Conventions Used in Defining AES_CBC_HMAC_SHA2
	4.10.2. Generic AES_CBC_HMAC_SHA2 Algorithm
	4.10.2.1. AES_CBC_HMAC_SHA2 Encryption
	4.10.2.2. AES_CBC_HMAC_SHA2 Decryption
	4.10.3. AES_128_CBC_HMAC_SHA_256
	4.10.4. AES_192_CBC_HMAC_SHA_384
	4.10.5. AES_256_CBC_HMAC_SHA_512
	4.10.6. Plaintext Encryption with AES_CBC_HMAC_SHA2
	4.11. Plaintext Encryption with AES GCM
	5. Cryptographic Algorithms for JWK
	5.1. "kty" (Key Type) Parameter Values
	5.2. JWK Parameters for Elliptic Curve Keys
	5.2.1. JWK Parameters for Elliptic Curve Public Keys
	5.2.1.1. "crv" (Curve) Parameter
	5.2.1.2. "x" (X Coordinate) Parameter
	5.2.1.3. "y" (Y Coordinate) Parameter
	5.2.2. JWK Parameters for Elliptic Curve Private Keys
	5.2.2.1. "d" (ECC Private Key) Parameter
	5.3. JWK Parameters for RSA Keys
	5.3.1. JWK Parameters for RSA Public Keys
	5.3.1.1. "n" (Modulus) Parameter
	5.3.1.2. "e" (Exponent) Parameter
	5.3.2. JWK Parameters for RSA Private Keys
	5.3.2.1. "d" (Private Exponent) Parameter
	5.3.2.2. "p" (First Prime Factor) Parameter
	5.3.2.3. "q" (Second Prime Factor) Parameter
	5.3.2.4. "dp" (First Factor CRT Exponent) Parameter
	5.3.2.5. "dq" (Second Factor CRT Exponent) Parameter
	5.3.2.6. "qi" (First CRT Coefficient) Parameter
	5.3.2.7. "oth" (Other Primes Info) Parameter
	5.3.2.7.1. "r" (Prime Factor)
	5.3.2.7.2. "d" (Factor CRT Exponent)
	5.3.2.7.3. "t" (Factor CRT Coefficient)
	5.4. JWK Parameters for Symmetric Keys
	5.4.1. "k" (Key Value) Parameter
	6. IANA Considerations
	6.1. JSON Web Signature and Encryption Algorithms Registry
	6.1.1. Template
	6.1.2. Initial Registry Contents
	6.2. JSON Web Key Types Registry
	6.2.1. Registration Template
	6.2.2. Initial Registry Contents
	6.3. JSON Web Key Parameters Registration
	6.3.1. Registry Contents
	6.4. Registration of JWE Header Parameter Names
	6.4.1. Registry Contents
	7. Security Considerations
	7.1. Reusing Key Material when Encrypting Keys
	7.2. Password Considerations
	8. Internationalization Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Digital Signature/MAC Algorithm Identifier Cross-Reference
	Appendix B. Encryption Algorithm Identifier Cross-Reference
	Appendix C. Test Cases for AES_CBC_HMAC_SHA2 Algorithms
	C.1. Test Cases for AES_128_CBC_HMAC_SHA_256
	C.2. Test Cases for AES_192_CBC_HMAC_SHA_384
	C.3. Test Cases for AES_256_CBC_HMAC_SHA_512
	Appendix D. Example ECDH-ES Key Agreement Computation
	Appendix E. Acknowledgements
	Appendix F. Document History
	Author's Address

