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Abstract

   For many years, a lack of responsiveness, variously called lag,
   latency, or bufferbloat, has been recognized as an unfortunate, but
   common, symptom in today’s networks.  Even after a decade of work on
   standardizing technical solutions, it remains a common problem for
   the end users.

   Everyone "knows" that it is "normal" for a video conference to have
   problems when somebody else at home is watching a 4K movie or
   uploading photos from their phone.  However, there is no technical
   reason for this to be the case.  In fact, various queue management
   solutions have solved the problem.

   Our networks remain unresponsive, not from a lack of technical
   solutions, but rather a lack of awareness of the problem and
   deployment of its solutions.  We believe that creating a tool that
   measures the problem and matches people’s everyday experience will
   create the necessary awareness, and result in a demand for solutions.

   This document specifies the "Responsiveness Test" for measuring
   responsiveness.  It uses common protocols and mechanisms to measure
   user experience specifically when the network is under working
   conditions.  The measurement is expressed as "Round-trips Per Minute"
   (RPM) and should be included with throughput (up and down) and idle
   latency as critical indicators of network quality.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.
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   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 14 September 2023.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.
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1.  Introduction

   For many years, a lack of responsiveness, variously called lag,
   latency, or bufferbloat, has been recognized as an unfortunate, but
   common, symptom in today’s networks [Bufferbloat].  Solutions like
   fq_codel [RFC8290], PIE [RFC8033] or L4S [RFC9330] have been
   standardized and are to some extent widely implemented.
   Nevertheless, people still suffer from bufferbloat.

   Although significant, the impact on user experience can be transitory
   -- that is, its effect is not always visible to the user.  Whenever a
   network is actively being used at its full capacity, buffers can fill
   up and create latency for traffic.  The duration of those full
   buffers may be brief: a medium-sized file transfer, like an email
   attachment or uploading photos, can create bursts of latency spikes.
   An example of this is lag occurring during a videoconference, where a
   connection is briefly shown as unstable.

   These short-lived disruptions make it hard to narrow down the cause.
   We believe that it is necessary to create a standardized way to
   measure and express responsiveness.

   Including the responsiveness-under-working-conditions test among
   other measurements of network quality (e.g., throughput and idle
   latency) would raise awareness of the problem and establish the
   expectation among users that their network providers deploy
   solutions.

1.1.  Terminology

   A word about the term "bufferbloat" -- the undesirable latency that
   comes from a router or other network equipment buffering too much
   data.  This document uses the term as a general description of bad
   latency, using more precise wording where warranted.

   "Latency" is a poor measure of responsiveness, because it can be hard
   for the general public to understand.  The units are unfamiliar
   ("what is a millisecond?") and counterintuitive ("100 msec -- that
   sounds good -- it’s only a tenth of a second!").
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   Instead, we define the term "responsiveness under working conditions"
   to make it clear that we are measuring all, not just idle,
   conditions, and use "round-trips per minute" as the unit.  The
   advantage of using round-trips per minute as the unit are two-fold:
   First, it allows for a unit that is "the higher the better".  This
   kind of unit is often more intuitive for end-users.  Second, the
   range of the values tends to be around the 4-digit integer range
   which is also a value easy to compare and read, again allowing for a
   more intuitive use.  Finally, we abbreviate the unit to "RPM", a wink
   to the "revolutions per minute" that we use for car engines.

   This document defines an algorithm for the "Responsiveness Test" that
   explicitly measures responsiveness under working conditions.

2.  Design Constraints

   There are many challenges to defining measurements of the Internet:
   the dynamic nature of the Internet, the diverse nature of the
   traffic, the large number of devices that affect traffic, the
   difficulty of attaining appropriate measurement conditions, diurnal
   traffic patterns, and changing routes.

   In order to minimize the effects of these challenges, it’s best to
   keep the test duration relatively short.

   TCP and UDP traffic, or traffic on ports 80 and 443, may take
   significantly different paths over the network between source and
   destination and be subject to entirely different Quality of Service
   (QoS) treatment.  A good test will use standard transport-layer
   traffic -- typical for people’s use of the network -- that is subject
   to the transport layer’s congestion control algorithms that might
   reduce the traffic’s rate and thus its buffering in the network.

   Traditionally, one thinks of bufferbloat happening in the network,
   i.e., on routers and switches of the Internet.  However, the
   networking stacks of the clients and servers can have huge buffers.
   Data sitting in TCP sockets or waiting for the application to send or
   read causes artificial latency, and affects user experience the same
   way as in-network bufferbloat.

   Finally, it is crucial to recognize that significant queueing only
   happens on entry to the lowest-capacity (or "bottleneck") hop on a
   network path.  For any flow of data between two endpoints there is
   always one hop along the path where the capacity available to that
   flow at that hop is the lowest among all the hops of that flow’s path
   at that moment in time.  It is important to understand that the
   existence of a lowest-capacity hop on a network path and a buffer to
   smooth bursts of data is not itself a problem.  In a heterogeneous
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   network like the Internet it is inevitable that there must
   necessarily be some hop along the path with the lowest capacity for
   that path.  If that hop were to be improved, then some other hop
   would become the new lowest-capacity hop for that path.  In this
   context a "bottleneck" should not be seen as a problem to be fixed,
   because any attempt to "fix" the bottleneck is futile -- such a "fix"
   can never remove the existence of a bottleneck on a path; it just
   moves the bottleneck somewhere else.  Arguably, this heterogeneity of
   the Internet is one of its greatest strengths.  Allowing individual
   technologies to evolve and improve at their own pace, without
   requiring the entire Internet to change in lock-step, has enabled
   enormous improvements over the years in technologies like DSL, cable
   modems, Ethernet, and Wi-Fi, each advancing independently as new
   developments became ready.  As a result of this flexibility we have
   moved incrementally, one step at a time, from 56kb/s dial-up modems
   in the 1990s to Gb/s home Internet service and Gb/s wireless
   connectivity today.

   Note that in a shared datagram network, conditions do not remain
   static.  The hop that is the current bottleneck may change from
   moment to moment.  For example, changes in simultaneous traffic may
   result in changes to a flow’s share of a given hop.  A user moving
   around may cause the Wi-Fi transmission rate to vary widely, from a
   few Mb/s when far from the Access Point, all the way up to Gb/s or
   more when close to the Access Point.

   Consequently, if we wish to enjoy the benefits of the Internet’s
   great flexibility, we need software that embraces and celebrates this
   diversity and adapts intelligently to the varying conditions it
   encounters.

   Because significant queueing only happens on entry to the bottleneck
   hop, the queue management at this critical hop of the path almost
   entirely determines the responsiveness of the entire flow.  If the
   bottleneck hop’s queue management algorithm allows an excessively
   large queue to form, this results in excessively large delays for
   packets sitting in that queue awaiting transmission, significantly
   degrading overall user experience.

   In order to discover the depth of the buffer at the bottleneck hop,
   the proposed Responsiveness Test mimics normal network operations and
   data transfers, with the goal of filling the bottleneck buffer to
   capacity, and then measures the resulting end-to-end latency under
   these so-called working conditions.  A well-managed bottleneck queue
   keeps its occupancy under control, resulting in consistently low
   round-trip times and consistently good responsiveness.  A poorly
   managed bottleneck queue will not.
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3.  Goals

   The algorithm described here defines a Responsiveness Test that
   serves as a good proxy for user experience.  Therefore:

   1.  Because today’s Internet traffic primarily uses HTTP/2 over TLS,
       the test’s algorithm should use that protocol.

       As a side note: other types of traffic are gaining in popularity
       (HTTP/3) and/or are already being used widely (RTP).  Traffic
       prioritization and QoS rules on the Internet may subject traffic
       to completely different paths: these could also be measured
       separately.

   2.  Because the Internet is marked by the deployment of countless
       middleboxes like transparent TCP proxies or traffic
       prioritization for certain types of traffic, the Responsiveness
       Test algorithm must take into account their effect on TCP-
       handshake [RFC0793], TLS-handshake, and request/response.

   3.  Because the goal of the test is to educate end users, the results
       should be expressed in an intuitive, nontechnical form and not
       commit the user to spend a significant amount of their time (we
       target 20 seconds).

4.  Measuring Responsiveness Under Working Conditions

   Overall, the test to measure responsiveness under working conditions
   proceeds in two steps:

   1.  Put the network connection into "working conditions"

   2.  Measure responsiveness of the network.

   The following explains how the former and the latter are achieved.

4.1.  Working Conditions

   What are _the_ conditions that best emulate how a network connection
   is used?  There is no one true answer to this question.  It is a
   tradeoff between using realistic traffic patterns and pushing the
   network to its limits.

   The Responsiveness Test defines working conditions as the condition
   where the path between the measuring endpoints is utilized at its
   end-to-end capacity and the queue at the bottleneck link is at (or
   beyond) its maximum occupancy.  Under these conditions, the network
   connection’s responsiveness will be at its worst.
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   The Responsiveness Test algorithm for reaching working conditions
   combines multiple standard HTTP transactions with very large data
   objects according to realistic traffic patterns to create these
   conditions.

   This allows to create a stable state of working conditions during
   which the bottleneck of the path between client and server has its
   buffer filled up entirely, without generating DoS-like traffic
   patterns (e.g., intentional UDP flooding).  This creates a realistic
   traffic mix representative of what a typical user’s network
   experiences in normal operation.

   Finally, as end-user usage of the network evolves to newer protocols
   and congestion control algorithms, it is important that the working
   conditions also can evolve to continuously represent a realistic
   traffic pattern.

4.1.1.  Single-flow vs multi-flow

   A single TCP connection may not be sufficient to reach the capacity
   and full buffer occupancy of a path quickly.  Using a 4MB receive
   window, over a network with a 32 ms round-trip time, a single TCP
   connection can achieve up to 1Gb/s throughput.  Additionally, deep
   buffers along the path between the two endpoints may be significantly
   larger than 4MB.  TCP allows larger receive window sizes, up to 1GB.
   However, most transport stacks aggressively limit the size of the
   receive window to avoid consuming too much memory.

   Thus, the only way to achieve full capacity and full buffer occupancy
   on those networks is by creating multiple connections, allowing to
   actively fill the bottleneck’s buffer to achieve maximum working
   conditions.

   Even if a single TCP connection would be able to fill the
   bottleneck’s buffer, it may take some time for a single TCP
   connection to ramp up to full speed.  One of the goals of the
   Responsiveness Test is to help the user quickly measure their
   network.  As a result, the test must load the network, take its
   measurements, and then finish as fast as possible.

   Finally, traditional loss-based TCP congestion control algorithms
   react aggressively to packet loss by reducing the congestion window.
   This reaction (intended by the protocol design) decreases the
   queueing within the network, making it harder to determine the depth
   of the bottleneck queue reliably.
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   The purpose of the Responsiveness Test is not to productively move
   data across the network in a useful way, the way a normal application
   does.  The purpose of the Responsiveness Test is, as quickly as
   possible, to simulate a representative traffic load as if real
   applications were doing sustained data transfers, measure the
   resulting round-trip time occurring under those realistic conditions.
   Because of this, using multiple simultaneous parallel connections
   allows the Responsiveness Test to complete its task more quickly, in
   a way that overall is less disruptive and less wasteful of network
   capacity than a test using a single TCP connection that would take
   longer to bring the bottleneck hop to a stable saturated state.

   In this document, we impose an upper bound on the number of parallel
   load-generating connections to 16.

4.1.2.  Parallel vs Sequential Uplink and Downlink

   Poor responsiveness can be caused by queues in either (or both) the
   upstream and the downstream direction.  Furthermore, both paths may
   differ significantly due to access link conditions (e.g., 5G
   downstream and LTE upstream) or routing changes within the ISPs.  To
   measure responsiveness under working conditions, the algorithm must
   explore both directions.

   One approach could be to measure responsiveness in the uplink and
   downlink in parallel.  It would allow for a shorter test run-time.

   However, a number of caveats come with measuring in parallel:

   *  Half-duplex links may not permit simultaneous uplink and downlink
      traffic.  This restriction means the test might not reach the
      path’s capacity in both directions at once and thus not expose all
      the potential sources of low responsiveness.

   *  Debuggability of the results becomes harder: During parallel
      measurement it is impossible to differentiate whether the observed
      latency happens in the uplink or the downlink direction.

   Thus, we recommend testing uplink and downlink sequentially.
   Parallel testing is considered a future extension.

Paasch, et al.          Expires 14 September 2023               [Page 8]



Internet-Draft   Responsiveness under Working Conditions      March 2023

4.1.3.  Achieving Full Buffer Utilization

   The Responsiveness Test gradually increases the number of TCP
   connections (known as load-generating connections) and measures
   "goodput" (the sum of actual data transferred across all connections
   in a unit of time) continuously.  By definition, once goodput is
   maximized, buffers will start filling up, creating the "standing
   queue" that is characteristic of bufferbloat.  At this moment the
   test starts measuring the responsiveness until it, too, reaches
   saturation.  At this point we are creating the worst-case scenario
   within the limits of the realistic traffic pattern.

   The algorithm notes that throughput increases rapidly until TCP
   connections complete their TCP slow-start phase.  At that point,
   throughput eventually stalls, often due to receive window
   limitations, particularly in cases of high network bandwidth, high
   network round-trip time, low receive window size, or a combination of
   all three.  The only means to further increase throughput is by
   adding more TCP connections to the pool of load-generating
   connections.  If new connections leave the throughput the same, full
   link utilization has been reached.  At this point, adding ore
   connections will allow to achieve full buffer occupancy.
   Responsiveness will gradually decrease from now on, until the buffers
   are entirely full and reach stability of the responsiveness as well.

4.2.  Test parameters

   A number of parameters serve as input to the test methodology.  The
   following lists their acronyms and default values.  Hereafter the
   detailed description of the methodology will explain how these
   parameters are being used.  Experience has shown that these
   parameters allow for a low runtime and accurate results among a wide
   range of environments.
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     +======+==============================================+=========+
     | Name | Explanation                                  | Default |
     |      |                                              | Value   |
     +======+==============================================+=========+
     | MAD  | Moving Average Distance (number of intervals | 4       |
     |      | to take into account for the moving average) |         |
     +------+----------------------------------------------+---------+
     | ID   | Interval duration at which the algorithm     | 1       |
     |      | reevaluates stability                        | second  |
     +------+----------------------------------------------+---------+
     | TMP  | Trimmed Mean Percentage to be trimmed        | 95%     |
     +------+----------------------------------------------+---------+
     | SDT  | Standard Deviation Tolerance for stability   | 5%      |
     |      | detection                                    |         |
     +------+----------------------------------------------+---------+
     | MNP  | Maximum number of parallel transport-layer   | 16      |
     |      | connections                                  |         |
     +------+----------------------------------------------+---------+
     | MPS  | Maximum responsiveness probes per second     | 100     |
     +------+----------------------------------------------+---------+
     | PTC  | Percentage of Total Capacity the probes are  | 5%      |
     |      | allowed to consume                           |         |
     +------+----------------------------------------------+---------+

                                  Table 1

4.3.  Measuring Responsiveness

   Measuring responsiveness while achieving working conditions is a
   process of continuous measurement.  It requires a sufficiently large
   sample-size to have confidence in the results.

   The measurement of the responsiveness happens by sending probe-
   requests.  There are two types of probe requests:

   1.  A HTTP GET request on a separate connection ("foreign probes").
       This test mimics the time it takes for a web browser to connect
       to a new web server and request the first element of a web page
       (e.g., "index.html"), or the startup time for a video streaming
       client to launch and begin fetching media.
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   2.  A HTTP GET request multiplexed on the load-generating connections
       ("self probes").  This test mimics the time it takes for a video
       streaming client to skip ahead to a different chapter in the same
       video stream, or for a navigation client to react and fetch new
       map tiles when the user scrolls the map to view a different area.
       In a well functioning system fetching new data over an existing
       connection should take less time than creating a brand new TLS
       connection from scratch to do the same thing.

   Foreign probes will provide 3 sets of data-points.  First, the
   duration of the TCP-handshake (noted hereafter as tcp_f).  Second,
   the TLS round-trip-time (noted tls_f).  For this, it is important to
   note that different TLS versions have a different number of round-
   trips.  Thus, the TLS establishment time needs to be normalized to
   the number of round-trips the TLS handshake takes until the
   connection is ready to transmit data.  And third, the HTTP elapsed
   time between issuing the GET request for a 1-byte object and
   receiving the entire response (noted http_f).

   Self probes will provide a single data-point for the duration of time
   between when the HTTP GET request for the 1-byte object is issued on
   the load-generating connection and the full HTTP response has been
   received (noted http_s).

   tcp_f, tls_f, http_f and http_s are all measured in milliseconds.

   The more probes that are sent, the more data available for
   calculation.  In order to generate as much data as possible, the
   Responsiveness Test specifies that a client issue these probes
   regularly.  There is, however, a risk that on low-capacity networks
   the responsiveness probes themselves will consume a significant
   amount of the capacity.  Because the test mandates first saturating
   capacity before probing for responsiveness, we are able to accurately
   estimate how much of the capacity the responsiveness probes will
   consume and never send more probes than the network can handle.

   Limiting the data used by probes can be done by providing an estimate
   of the number of bytes exchanged for a responsiveness probe.  Taking
   TCP and TLS overheads into account, we can estimate the amount of
   data exchanged for a probe on a foreign connection to be around 5000
   bytes.  On load-generating connections we can expect an overhead of
   no more than 1000 bytes.

Paasch, et al.          Expires 14 September 2023              [Page 11]



Internet-Draft   Responsiveness under Working Conditions      March 2023

   Given this information, we recommend that each responsiveness probing
   interval does not send more than MPS (Maximum responsiveness Probes
   per Second - default to 100) probes per second.  The probes should be
   spread out equally over the duration of the interval with an equal
   split between foreign and different load-generating connections.  For
   the probes on load-generating connections, the connection should be
   selected randomly for each probe.

   This would result in a total amount of data per second of 300 KB or
   2400Kb, meaning a total capacity utilization of 2400 Kbps for the
   probing.

   On high-speed networks, this will provide a significant amount of
   samples, while at the same time minimizing the probing overhead.
   However, on severely capacity-constrained networks the probing
   traffic could consume a significant portion of the available
   capacity.  The Responsiveness Test must adjust its probing frequency
   in such a way that the probing traffic does not consume more than PTC
   (Percentage of Total Capacity - default to 5%) of the available
   capacity.

4.3.1.  Aggregating the Measurements

   The algorithm produces sets of 4 times for each probe, namely: tcp_f,
   tls_f, http_f, http_l (from the previous section).  The
   responsiveness evolves over time as buffers gradually reach
   saturation.  Once the buffers are saturated responsiveness is stable
   over time.  Thus, the aggregation of the measurements considers the
   last MAD (Moving Average Distance - default to 4) intervals worth of
   completed responsiveness probes.

   Over the timeframe of these intervals a potentially large number of
   samples has been collected.  These may be affected by noise in the
   measurements, and outliers.  Thus, to aggregate these we suggest to
   use a trimmed mean at the TMP (Trimmed Mean Percentage - default to
   95%) percentile, thus providing the following numbers: TM(tcp_f),
   TM(tls_f), TM(http_f), TM(http_l).

   The responsiveness is then calculated as the weighted mean:

   Responsiveness = 60000 /
   (1/6*(TM(tcp_f) + TM(tls_f) + TM(http_f)) + 1/2*TM(http_s))

   This responsiveness value presents round-trips per minute (RPM).
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4.4.  Final Algorithm

   Considering the previous two sections, where we explain what the
   meaning of working conditions is and the definition of
   responsiveness, we can design the final algorithm.  In order to
   measure the worst-case latency we need to transmit traffic at the
   full capacity of the path as well as ensure the buffers are filled to
   the maximum.  We can achieve this by continuously adding HTTP
   sessions to the pool of connections in a ID (Interval duration -
   default to 1 second) interval.  This will ensure that we quickly
   reach capacity and full buffer occupancy.  First, the algorithm
   reaches stability for the goodput.  Once goodput stability has been
   achieved, responsiveness probes are being transmitted until
   responsiveness stability is reached.

   We consider both, goodput and responsiveness to be stable, when the
   standard deviation of the past MAD intervals is within SDT (Standard
   Deviation Tolerance - default to 5%) of the last of the moving
   averages.

   The following algorithm reaches working conditions of a network by
   using HTTP/2 upload (POST) or download (GET) requests of infinitely
   large files.  The algorithm is the same for upload and download and
   uses the same term "load-generating connection" for each.  The
   actions of the algorithm take place at regular intervals.  For the
   current draft the interval is defined as one second.

   Where

   *  i: The index of the current interval.  The variable i is
      initialized to 0 when the algorithm begins and increases by one
      for each interval.

   *  moving average aggregate goodput at interval p: The number of
      total bytes of data transferred within interval p and the three
      immediately preceding intervals, divided by four times the
      interval duration.

   the steps of the algorithm are:

   *  Create a load-generating connection.

   *  At each interval:

      -  Create an additional load-generating connection.

      -  If goodput has not saturated:
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         o  Compute the moving average aggregate goodput at interval i
            as current_average.

         o  If the standard deviation of the past MAD average goodput
            values is less than SDT of the current_average, declare
            saturation and move on to probe responsiveness.

      -  If goodput has saturated:

         o  Compute the responsiveness at interval i as
            current_responsiveness.

         o  If the standard deviation of the past MAD responsiveness
            values is less than SDT of the current_responsiveness,
            declare saturation and report current_responsiveness.

   In Section 3, it is mentioned that one of the goals is that the test
   finishes within 20 seconds.  It is left to the implementation what to
   do when stability is not reached within that time-frame.  For
   example, an implementation might gather a provisional responsiveness
   measurement or let the test run for longer.

   Finally, if at any point one of these connections terminates with an
   error, the test should be aborted.

4.4.1.  Confidence of test-results

   As described above, a tool running the algorithm typically defines a
   time-limit for the execution of each of the stages.  For example, if
   the tool allocates a total run-time of 40 seconds, and it executes a
   full downlink followed by a uplink test, it may allocate 10 seconds
   to each of the saturation-stages (downlink capacity saturation,
   downlink responsiveness saturation, uplink capacity saturation,
   uplink responsiveness saturation).

   As the different stages may or may not reach stability, we can define
   a "confidence score" for the different metrics (capacity and
   responsiveness) the methodology was able to measure.

   We define "Low" confidence in the result if the algorithm was not
   even able to execute 4 iterations of the specific stage.  Meaning,
   the moving average is not taking the full window into account.

   We define "Medium" confidence if the algorithm was able to execute at
   least 4 iterations, but did not reach stability based on standard
   deviation tolerance.
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   We define "High" confidence if the algorithm was able to fully reach
   stability based on the defined standard deviation tolerance.

   It must be noted that depending on the chosen standard deviation
   tolerance or other paramenters of the methodology and the network-
   environment it may be that a measurement never converges to a stable
   point.  This is expected and part of the dynamic nature of networking
   and the accompanying measurement inaccuracies.  Which is why the
   importance of imposing a time-limit is so crucial, together with an
   accurate depiction of the "confidence" the methodology was able to
   generate.

5.  Interpreting responsiveness results

   The described methodology uses a high-level approach to measure
   responsiveness.  By executing the test with regular HTTP requests a
   number of elements come into play that will influence the result.
   Contrary to more traditional measurement methods the responsiveness
   metric is not only influenced by the properties of the network but
   can significantly be influenced by the properties of the client and
   the server implementations.  This section describes how the different
   elements influence responsiveness and how a user may differentiate
   them when debugging a network.

5.1.  Elements influencing responsiveness

   Due to the HTTP-centric approach of the measurement methodology a
   number of factors come into play that influence the results.  Namely,
   the client-side networking stack (from the top of the HTTP-layer all
   the way down to the physical layer), the network (including potential
   transparent HTTP "accelerators"), and the server-side networking
   stack.  The following outlines how each of these contributes to the
   responsiveness.

5.1.1.  Client side influence

   As the driver of the measurement, the client-side networking stack
   can have a large influence on the result.  The biggest influence of
   the client comes when measuring the responsiveness in the uplink
   direction.  Load-generation will cause queue-buildup in the transport
   layer as well as the HTTP layer.  Additionally, if the network’s
   bottleneck is on the first hop, queue-buildup will happen at the
   layers below the transport stack (e.g., NIC firmware).

   Each of these queue build-ups may cause latency and thus low
   responsiveness.  A well designed networking stack would ensure that
   queue-buildup in the TCP layer is kept at a bare minimum with
   solutions like TCP_NOTSENT_LOWAT [draft-ietf-tcpm-rfc793bis].  At the
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   HTTP/2 layer it is important that the load-generating data is not
   interfering with the latency-measuring probes.  For example, the
   different streams should not be stacked one after the other but
   rather be allowed to be multiplexed for optimal latency.  The queue-
   buildup at these layers would only influence latency on the probes
   that are sent on the load-generating connections.

   Below the transport layer many places have a potential queue build-
   up.  It is important to keep these queues at reasonable sizes or that
   they implement techniques like FQ-Codel.  Depending on the techniques
   used at these layers, the queue build-up can influence latency on
   probes sent on load-generating connections as well as separate
   connections.  If flow-queuing is used at these layers, the impact on
   separate connections will be negligible.

5.1.2.  Network influence

   The network obviously is a large driver for the responsiveness
   result.  Propagation delay from the client to the server as well as
   queuing in the bottleneck node will cause latency.  Beyond these
   traditional sources of latency, other factors may influence the
   results as well.  Many networks deploy transparent TCP Proxies,
   firewalls doing deep packet-inspection, HTTP "accelerators",... As
   the methodology relies on the use of HTTP/2, the responsiveness
   metric will be influenced by such devices as well.

   The network will influence both kinds of latency probes that the
   responsiveness tests sends out.  Depending on the network’s use of
   Smart Queue Management and whether this includes flow-queuing or not,
   the latency probes on the load-generating connections may be
   influenced differently than the probes on the separate connections.

5.1.3.  Server side influence

   Finally, the server-side introduces the same kind of influence on the
   responsiveness as the client-side, with the difference that the
   responsiveness will be impacted during the downlink load generation.

5.2.  Root-causing Responsiveness

   Once a responsiveness result has been generated one might be tempted
   to try to localize the source of a potential low responsiveness.  The
   responsiveness measurement is however aimed at providing a quick,
   top-level view of the responsiveness under working conditions the way
   end-users experience it.  Localizing the source of low responsiveness
   involves however a set of different tools and methodologies.
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   Nevertheless, the Responsiveness Test allows to gain some insight
   into what the source of the latency is.  The previous section
   described the elements that influence the responsiveness.  From there
   it became apparent that the latency measured on the load-generating
   connections and the latency measured on separate connections may be
   different due to the different elements.

   For example, if the latency measured on separate connections is much
   less than the latency measured on the load-generating connections, it
   is possible to narrow down the source of the additional latency on
   the load-generating connections.  As long as the other elements of
   the network don’t do flow-queueing, the additional latency must come
   from the queue build-up at the HTTP and TCP layer.  This is because
   all other bottlenecks in the network that may cause a queue build-up
   will be affecting the load-generating connections as well as the
   separate latency probing connections in the same way.

6.  Responsiveness Test Server API

   The responsiveness measurement is built upon a foundation of standard
   protocols: IP, TCP, TLS, HTTP/2.  On top of this foundation, a
   minimal amount of new "protocol" is defined, merely specifying the
   URLs that used for GET and PUT in the process of executing the test.

   Both the client and the server MUST support HTTP/2 over TLS.  The
   client MUST be able to send a GET request and a POST.  The server
   MUST be able to respond to both of these HTTP commands.  The server
   MUST have the ability to provide content upon a GET request.  The
   server MUST use a packet scheduling algorithm that minimizes internal
   queueing to avoid affecting the client’s measurement.

   As clients and servers become deployed that use L4S congestion
   control (e.g., TCP Prague with ECT(1) packet marking), for their
   normal traffic when it is available, and fall back to traditional
   loss-based congestion controls (e.g., Reno or CUBIC) otherwise, the
   same strategy SHOULD be used for Responsiveness Test traffic.  This
   is RECOMMENDED so that the synthetic traffic generated by the
   Responsiveness Test mimics real-world traffic for that server.

   Delay-based congestion-control algorithms (e.g., Vegas, FAST, BBR)
   SHOULD NOT be used for Responsiveness Test traffic because they take
   much longer to discover the depth of the bottleneck buffers.  Delay-
   based congestion-control algorithms seek to mitigate the effects of
   bufferbloat, by detecting and responding to early signs of increasing
   round-trip delay, and reducing the amount of data they have in flight
   before the bottleneck buffer fills up and overflows.  In a world
   where bufferbloat is common, this is a pragmatic mitigation to allow
   software to work better in that environment.  However, that approach
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   does not fix the underlying problem of bufferbloat; it merely avoids
   it in some cases, and allows the problem in the network to persist.
   For a diagnostic tool made to identify symptoms of bufferbloat in the
   network so that they can be fixed, using a transport protocol
   explicitly designed to mask those symptoms would be a poor choice,
   and would require the test to run for much longer to deliver the same
   results.

   The server MUST respond to 4 URLs:

   1.  A "small" URL/response: The server must respond with a status
       code of 200 and 1 byte in the body.  The actual message content
       is irrelevant.  The server SHOULD specify the content-type as
       application/octet-stream.  The server SHOULD minimize the size,
       in bytes, of the response fields that are encoded and sent on the
       wire.

   2.  A "large" URL/response: The server must respond with a status
       code of 200 and a body size of at least 8GB.  The server SHOULD
       specify the content-type as application/octet-stream.  The body
       can be bigger, and may need to grow as network speeds increases
       over time.  The actual message content is irrelevant.  The client
       will probably never completely download the object, but will
       instead close the connection after reaching working condition and
       making its measurements.

   3.  An "upload" URL/response: The server must handle a POST request
       with an arbitrary body size.  The server should discard the
       payload.  The actual POST message content is irrelevant.  The
       client will probably never completely upload the object, but will
       instead close the connection after reaching working condition and
       making its measurements.

   4.  A .well-known URL [RFC8615] which contains configuration
       information for the client to run the test (See Section 7,
       below.)

   The client begins the responsiveness measurement by querying for the
   JSON [RFC8259] configuration.  This supplies the URLs for creating
   the load-generating connections in the upstream and downstream
   direction as well as the small object for the latency measurements.
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7.  Responsiveness Test Server Discovery

   It makes sense for a service provider (either an application service
   provider like a video conferencing service or a network access
   provider like an ISP) to host Responsiveness Test Server instances on
   their network so customers can determine what to expect about the
   quality of their connection to the service offered by that provider.
   However, when a user performs a Responsiveness Test and determines
   that they are suffering from poor responsiveness during the
   connection to that service, the logical next questions might be,

   1.  "What’s causing my poor performance?"

   2.  "Is it poor buffer management by my ISP?"

   3.  "Is it poor buffer management in my home Wi-Fi Access point?"

   4.  "Something to do with the service provider?"

   5.  "Something else entirely?"

   To help an end user answer these questions, it will be useful for
   test clients to be able to easily discover Responsiveness Test Server
   instances running in various places in the network (e.g., their home
   router, their Wi-Fi access point, their ISP’s head-end equipment,
   etc).

   Consider this example scenario: A user has a cable modem service
   offering 100 Mb/s download speed, connected via gigabit Ethernet to
   one or more Wi-Fi access points in their home, which then offer
   service to Wi-Fi client devices at different rates depending on
   distance, interference from other traffic, etc.  By having the cable
   modem itself host a Responsiveness Test Server instance, the user can
   then run a test between the cable modem and their computer or
   smartphone, to help isolate whether bufferbloat they are experiencing
   is occurring in equipment inside the home (like their Wi-Fi access
   points) or somewhere outside the home.

7.1.  Well-Known Uniform Resource Identifier (URI) For Test Server
      Discovery

   Any organization that wishes to host their own instance of a
   Responsiveness Test Server can advertise that capability by hosting
   at the network quality well-known URI a resource whose content type
   is application/json and contains a valid JSON object meeting the
   following criteria:
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   {
     "version": 1,
     "urls": {
       "large_download_url":"https://nq.example.com/api/v1/large",
       "small_download_url":"https://nq.example.com/api/v1/small",
       "upload_url":        "https://nq.example.com/api/v1/upload"
     }
     "test_endpoint": "hostname123.provider.com"
   }

   The server SHALL specify the content-type of the resource at the
   well-known URI as application/json.

   The content of the "version" field SHALL be "1".  Integer values
   greater than "1" are reserved for future versions of this protocol.
   The content of the "large_download_url", "small_download_url", and
   "upload_url" SHALL all be validly formatted "http" or "https" URLs.
   See above for the semantics of the fields.  All of the fields in the
   sample configuration are required except "test_endpoint".  If the
   test server provider can pin all of the requests for a test run to a
   specific host in the service (for a particular run), they can specify
   that host name in the "test_endpoint" field.

   For purposes of registration of the well-known URI [RFC8615], the
   application name is "nq".  The media type of the resource at the
   well-known URI is "application/json" and the format of the resource
   is as specified above.  The URI scheme is "https".  No additional
   path components, query strings or fragments are valid for this well-
   known URI.

7.2.  DNS-Based Service Discovery for Test Server Discovery

   To further aid the test client in discovering instances of the
   Responsiveness Test Server, organizations wishing to host their own
   instances of the Test Server MAY advertise their availability using
   DNS-Based Service Discovery [RFC6763] using conventional, unicast DNS
   [RFC1034] or multicast DNS [RFC6762] on the organization network’s
   local link(s).

   The Responsiveness Test Service instances should advertise using the
   service type [RFC6335] "_nq._tcp".  Population of the appropriate DNS
   zone with the relevant unicast discovery records can be performed
   automatically using a Discovery Proxy [RFC8766], or in some scenarios
   simply by having a human administrator manually enter the required
   records.
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7.2.1.  Example

   An obscure service provider hosting a Responsiveness Test Server
   instance for their organization (obs.cr) on the "rpm.obs.cr" host
   would return the following answers to PTR and SRV conventional DNS
   queries:

   $ nslookup -q=ptr _nq._tcp.obs.cr.
   Non-authoritative answer:
   _nq._tcp.obs.crname = rpm._nq._tcp.obs.cr.
   $ nslookup -q=srv rpm._nq._tcp.obs.cr.
   Non-authoritative answer:
   rpm._nq._tcp.obs.crservice = 0 0 443 rpm.obs.cr.

   Given those conventional DNS query responses, the client would
   proceed to access the rpm.obs.cr host on port 443 at the .well-known/
   nq well-known URI to begin the test.

8.  Security Considerations

   TBD

9.  IANA Considerations

   IANA has been requested to record the service type "_nq._tcp"
   (Network Quality) for advertising and discovery of Responsiveness
   Test Server instances.
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Appendix A.  Example Server Configuration

   This section shows fragments of sample server configurations to host
   an responsiveness measurement endpoint.

A.1.  Apache Traffic Server

   Apache Traffic Server starting at version 9.1.0 supports
   configuration as a responsiveness server.  It requires the generator
   and the statichit plugin.

   The sample remap configuration file then is:

   map https://nq.example.com/api/v1/config \
       http://localhost/ \
       @plugin=statichit.so \
       @pparam=--file-path=config.example.com.json \
       @pparam=--mime-type=application/json

   map https://nq.example.com/api/v1/large \
       http://localhost/cache/8589934592/ \
       @plugin=generator.so

   map https://nq.example.com/api/v1/small \
       http://localhost/cache/1/ \
       @plugin=generator.so

   map https://nq.example.com/api/v1/upload \
       http://localhost/ \
       @plugin=generator.so
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