
IP Performance Measurement C. Paasch
Internet-Draft R. Meyer
Intended status: Standards Track S. Cheshire
Expires: 14 September 2023 Apple Inc.
 W. Hawkins
 University of Cincinnati
 13 March 2023

 Responsiveness under Working Conditions
 draft-ietf-ippm-responsiveness-02

Abstract

 For many years, a lack of responsiveness, variously called lag,
 latency, or bufferbloat, has been recognized as an unfortunate, but
 common, symptom in today’s networks. Even after a decade of work on
 standardizing technical solutions, it remains a common problem for
 the end users.

 Everyone "knows" that it is "normal" for a video conference to have
 problems when somebody else at home is watching a 4K movie or
 uploading photos from their phone. However, there is no technical
 reason for this to be the case. In fact, various queue management
 solutions have solved the problem.

 Our networks remain unresponsive, not from a lack of technical
 solutions, but rather a lack of awareness of the problem and
 deployment of its solutions. We believe that creating a tool that
 measures the problem and matches people’s everyday experience will
 create the necessary awareness, and result in a demand for solutions.

 This document specifies the "Responsiveness Test" for measuring
 responsiveness. It uses common protocols and mechanisms to measure
 user experience specifically when the network is under working
 conditions. The measurement is expressed as "Round-trips Per Minute"
 (RPM) and should be included with throughput (up and down) and idle
 latency as critical indicators of network quality.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Paasch, et al. Expires 14 September 2023 [Page 1]

Internet-Draft Responsiveness under Working Conditions March 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Design Constraints . 4
 3. Goals . 6
 4. Measuring Responsiveness Under Working Conditions 6
 4.1. Working Conditions 6
 4.1.1. Single-flow vs multi-flow 7
 4.1.2. Parallel vs Sequential Uplink and Downlink 8
 4.1.3. Achieving Full Buffer Utilization 9
 4.2. Test parameters . 9
 4.3. Measuring Responsiveness 10
 4.3.1. Aggregating the Measurements 12
 4.4. Final Algorithm . 13
 4.4.1. Confidence of test-results 14
 5. Interpreting responsiveness results 15
 5.1. Elements influencing responsiveness 15
 5.1.1. Client side influence 15
 5.1.2. Network influence 16
 5.1.3. Server side influence 16
 5.2. Root-causing Responsiveness 16
 6. Responsiveness Test Server API 17
 7. Responsiveness Test Server Discovery 19
 7.1. Well-Known Uniform Resource Identifier (URI) For Test
 Server Discovery . 19
 7.2. DNS-Based Service Discovery for Test Server Discovery . . 20

Paasch, et al. Expires 14 September 2023 [Page 2]

Internet-Draft Responsiveness under Working Conditions March 2023

 7.2.1. Example . 21
 8. Security Considerations 21
 9. IANA Considerations . 21
 10. Acknowledgments . 21
 11. Informative References 21
 Appendix A. Example Server Configuration 23
 A.1. Apache Traffic Server 23
 Authors’ Addresses . 23

1. Introduction

 For many years, a lack of responsiveness, variously called lag,
 latency, or bufferbloat, has been recognized as an unfortunate, but
 common, symptom in today’s networks [Bufferbloat]. Solutions like
 fq_codel [RFC8290], PIE [RFC8033] or L4S [RFC9330] have been
 standardized and are to some extent widely implemented.
 Nevertheless, people still suffer from bufferbloat.

 Although significant, the impact on user experience can be transitory
 -- that is, its effect is not always visible to the user. Whenever a
 network is actively being used at its full capacity, buffers can fill
 up and create latency for traffic. The duration of those full
 buffers may be brief: a medium-sized file transfer, like an email
 attachment or uploading photos, can create bursts of latency spikes.
 An example of this is lag occurring during a videoconference, where a
 connection is briefly shown as unstable.

 These short-lived disruptions make it hard to narrow down the cause.
 We believe that it is necessary to create a standardized way to
 measure and express responsiveness.

 Including the responsiveness-under-working-conditions test among
 other measurements of network quality (e.g., throughput and idle
 latency) would raise awareness of the problem and establish the
 expectation among users that their network providers deploy
 solutions.

1.1. Terminology

 A word about the term "bufferbloat" -- the undesirable latency that
 comes from a router or other network equipment buffering too much
 data. This document uses the term as a general description of bad
 latency, using more precise wording where warranted.

 "Latency" is a poor measure of responsiveness, because it can be hard
 for the general public to understand. The units are unfamiliar
 ("what is a millisecond?") and counterintuitive ("100 msec -- that
 sounds good -- it’s only a tenth of a second!").

Paasch, et al. Expires 14 September 2023 [Page 3]

Internet-Draft Responsiveness under Working Conditions March 2023

 Instead, we define the term "responsiveness under working conditions"
 to make it clear that we are measuring all, not just idle,
 conditions, and use "round-trips per minute" as the unit. The
 advantage of using round-trips per minute as the unit are two-fold:
 First, it allows for a unit that is "the higher the better". This
 kind of unit is often more intuitive for end-users. Second, the
 range of the values tends to be around the 4-digit integer range
 which is also a value easy to compare and read, again allowing for a
 more intuitive use. Finally, we abbreviate the unit to "RPM", a wink
 to the "revolutions per minute" that we use for car engines.

 This document defines an algorithm for the "Responsiveness Test" that
 explicitly measures responsiveness under working conditions.

2. Design Constraints

 There are many challenges to defining measurements of the Internet:
 the dynamic nature of the Internet, the diverse nature of the
 traffic, the large number of devices that affect traffic, the
 difficulty of attaining appropriate measurement conditions, diurnal
 traffic patterns, and changing routes.

 In order to minimize the effects of these challenges, it’s best to
 keep the test duration relatively short.

 TCP and UDP traffic, or traffic on ports 80 and 443, may take
 significantly different paths over the network between source and
 destination and be subject to entirely different Quality of Service
 (QoS) treatment. A good test will use standard transport-layer
 traffic -- typical for people’s use of the network -- that is subject
 to the transport layer’s congestion control algorithms that might
 reduce the traffic’s rate and thus its buffering in the network.

 Traditionally, one thinks of bufferbloat happening in the network,
 i.e., on routers and switches of the Internet. However, the
 networking stacks of the clients and servers can have huge buffers.
 Data sitting in TCP sockets or waiting for the application to send or
 read causes artificial latency, and affects user experience the same
 way as in-network bufferbloat.

 Finally, it is crucial to recognize that significant queueing only
 happens on entry to the lowest-capacity (or "bottleneck") hop on a
 network path. For any flow of data between two endpoints there is
 always one hop along the path where the capacity available to that
 flow at that hop is the lowest among all the hops of that flow’s path
 at that moment in time. It is important to understand that the
 existence of a lowest-capacity hop on a network path and a buffer to
 smooth bursts of data is not itself a problem. In a heterogeneous

Paasch, et al. Expires 14 September 2023 [Page 4]

Internet-Draft Responsiveness under Working Conditions March 2023

 network like the Internet it is inevitable that there must
 necessarily be some hop along the path with the lowest capacity for
 that path. If that hop were to be improved, then some other hop
 would become the new lowest-capacity hop for that path. In this
 context a "bottleneck" should not be seen as a problem to be fixed,
 because any attempt to "fix" the bottleneck is futile -- such a "fix"
 can never remove the existence of a bottleneck on a path; it just
 moves the bottleneck somewhere else. Arguably, this heterogeneity of
 the Internet is one of its greatest strengths. Allowing individual
 technologies to evolve and improve at their own pace, without
 requiring the entire Internet to change in lock-step, has enabled
 enormous improvements over the years in technologies like DSL, cable
 modems, Ethernet, and Wi-Fi, each advancing independently as new
 developments became ready. As a result of this flexibility we have
 moved incrementally, one step at a time, from 56kb/s dial-up modems
 in the 1990s to Gb/s home Internet service and Gb/s wireless
 connectivity today.

 Note that in a shared datagram network, conditions do not remain
 static. The hop that is the current bottleneck may change from
 moment to moment. For example, changes in simultaneous traffic may
 result in changes to a flow’s share of a given hop. A user moving
 around may cause the Wi-Fi transmission rate to vary widely, from a
 few Mb/s when far from the Access Point, all the way up to Gb/s or
 more when close to the Access Point.

 Consequently, if we wish to enjoy the benefits of the Internet’s
 great flexibility, we need software that embraces and celebrates this
 diversity and adapts intelligently to the varying conditions it
 encounters.

 Because significant queueing only happens on entry to the bottleneck
 hop, the queue management at this critical hop of the path almost
 entirely determines the responsiveness of the entire flow. If the
 bottleneck hop’s queue management algorithm allows an excessively
 large queue to form, this results in excessively large delays for
 packets sitting in that queue awaiting transmission, significantly
 degrading overall user experience.

 In order to discover the depth of the buffer at the bottleneck hop,
 the proposed Responsiveness Test mimics normal network operations and
 data transfers, with the goal of filling the bottleneck buffer to
 capacity, and then measures the resulting end-to-end latency under
 these so-called working conditions. A well-managed bottleneck queue
 keeps its occupancy under control, resulting in consistently low
 round-trip times and consistently good responsiveness. A poorly
 managed bottleneck queue will not.

Paasch, et al. Expires 14 September 2023 [Page 5]

Internet-Draft Responsiveness under Working Conditions March 2023

3. Goals

 The algorithm described here defines a Responsiveness Test that
 serves as a good proxy for user experience. Therefore:

 1. Because today’s Internet traffic primarily uses HTTP/2 over TLS,
 the test’s algorithm should use that protocol.

 As a side note: other types of traffic are gaining in popularity
 (HTTP/3) and/or are already being used widely (RTP). Traffic
 prioritization and QoS rules on the Internet may subject traffic
 to completely different paths: these could also be measured
 separately.

 2. Because the Internet is marked by the deployment of countless
 middleboxes like transparent TCP proxies or traffic
 prioritization for certain types of traffic, the Responsiveness
 Test algorithm must take into account their effect on TCP-
 handshake [RFC0793], TLS-handshake, and request/response.

 3. Because the goal of the test is to educate end users, the results
 should be expressed in an intuitive, nontechnical form and not
 commit the user to spend a significant amount of their time (we
 target 20 seconds).

4. Measuring Responsiveness Under Working Conditions

 Overall, the test to measure responsiveness under working conditions
 proceeds in two steps:

 1. Put the network connection into "working conditions"

 2. Measure responsiveness of the network.

 The following explains how the former and the latter are achieved.

4.1. Working Conditions

 What are _the_ conditions that best emulate how a network connection
 is used? There is no one true answer to this question. It is a
 tradeoff between using realistic traffic patterns and pushing the
 network to its limits.

 The Responsiveness Test defines working conditions as the condition
 where the path between the measuring endpoints is utilized at its
 end-to-end capacity and the queue at the bottleneck link is at (or
 beyond) its maximum occupancy. Under these conditions, the network
 connection’s responsiveness will be at its worst.

Paasch, et al. Expires 14 September 2023 [Page 6]

Internet-Draft Responsiveness under Working Conditions March 2023

 The Responsiveness Test algorithm for reaching working conditions
 combines multiple standard HTTP transactions with very large data
 objects according to realistic traffic patterns to create these
 conditions.

 This allows to create a stable state of working conditions during
 which the bottleneck of the path between client and server has its
 buffer filled up entirely, without generating DoS-like traffic
 patterns (e.g., intentional UDP flooding). This creates a realistic
 traffic mix representative of what a typical user’s network
 experiences in normal operation.

 Finally, as end-user usage of the network evolves to newer protocols
 and congestion control algorithms, it is important that the working
 conditions also can evolve to continuously represent a realistic
 traffic pattern.

4.1.1. Single-flow vs multi-flow

 A single TCP connection may not be sufficient to reach the capacity
 and full buffer occupancy of a path quickly. Using a 4MB receive
 window, over a network with a 32 ms round-trip time, a single TCP
 connection can achieve up to 1Gb/s throughput. Additionally, deep
 buffers along the path between the two endpoints may be significantly
 larger than 4MB. TCP allows larger receive window sizes, up to 1GB.
 However, most transport stacks aggressively limit the size of the
 receive window to avoid consuming too much memory.

 Thus, the only way to achieve full capacity and full buffer occupancy
 on those networks is by creating multiple connections, allowing to
 actively fill the bottleneck’s buffer to achieve maximum working
 conditions.

 Even if a single TCP connection would be able to fill the
 bottleneck’s buffer, it may take some time for a single TCP
 connection to ramp up to full speed. One of the goals of the
 Responsiveness Test is to help the user quickly measure their
 network. As a result, the test must load the network, take its
 measurements, and then finish as fast as possible.

 Finally, traditional loss-based TCP congestion control algorithms
 react aggressively to packet loss by reducing the congestion window.
 This reaction (intended by the protocol design) decreases the
 queueing within the network, making it harder to determine the depth
 of the bottleneck queue reliably.

Paasch, et al. Expires 14 September 2023 [Page 7]

Internet-Draft Responsiveness under Working Conditions March 2023

 The purpose of the Responsiveness Test is not to productively move
 data across the network in a useful way, the way a normal application
 does. The purpose of the Responsiveness Test is, as quickly as
 possible, to simulate a representative traffic load as if real
 applications were doing sustained data transfers, measure the
 resulting round-trip time occurring under those realistic conditions.
 Because of this, using multiple simultaneous parallel connections
 allows the Responsiveness Test to complete its task more quickly, in
 a way that overall is less disruptive and less wasteful of network
 capacity than a test using a single TCP connection that would take
 longer to bring the bottleneck hop to a stable saturated state.

 In this document, we impose an upper bound on the number of parallel
 load-generating connections to 16.

4.1.2. Parallel vs Sequential Uplink and Downlink

 Poor responsiveness can be caused by queues in either (or both) the
 upstream and the downstream direction. Furthermore, both paths may
 differ significantly due to access link conditions (e.g., 5G
 downstream and LTE upstream) or routing changes within the ISPs. To
 measure responsiveness under working conditions, the algorithm must
 explore both directions.

 One approach could be to measure responsiveness in the uplink and
 downlink in parallel. It would allow for a shorter test run-time.

 However, a number of caveats come with measuring in parallel:

 * Half-duplex links may not permit simultaneous uplink and downlink
 traffic. This restriction means the test might not reach the
 path’s capacity in both directions at once and thus not expose all
 the potential sources of low responsiveness.

 * Debuggability of the results becomes harder: During parallel
 measurement it is impossible to differentiate whether the observed
 latency happens in the uplink or the downlink direction.

 Thus, we recommend testing uplink and downlink sequentially.
 Parallel testing is considered a future extension.

Paasch, et al. Expires 14 September 2023 [Page 8]

Internet-Draft Responsiveness under Working Conditions March 2023

4.1.3. Achieving Full Buffer Utilization

 The Responsiveness Test gradually increases the number of TCP
 connections (known as load-generating connections) and measures
 "goodput" (the sum of actual data transferred across all connections
 in a unit of time) continuously. By definition, once goodput is
 maximized, buffers will start filling up, creating the "standing
 queue" that is characteristic of bufferbloat. At this moment the
 test starts measuring the responsiveness until it, too, reaches
 saturation. At this point we are creating the worst-case scenario
 within the limits of the realistic traffic pattern.

 The algorithm notes that throughput increases rapidly until TCP
 connections complete their TCP slow-start phase. At that point,
 throughput eventually stalls, often due to receive window
 limitations, particularly in cases of high network bandwidth, high
 network round-trip time, low receive window size, or a combination of
 all three. The only means to further increase throughput is by
 adding more TCP connections to the pool of load-generating
 connections. If new connections leave the throughput the same, full
 link utilization has been reached. At this point, adding ore
 connections will allow to achieve full buffer occupancy.
 Responsiveness will gradually decrease from now on, until the buffers
 are entirely full and reach stability of the responsiveness as well.

4.2. Test parameters

 A number of parameters serve as input to the test methodology. The
 following lists their acronyms and default values. Hereafter the
 detailed description of the methodology will explain how these
 parameters are being used. Experience has shown that these
 parameters allow for a low runtime and accurate results among a wide
 range of environments.

Paasch, et al. Expires 14 September 2023 [Page 9]

Internet-Draft Responsiveness under Working Conditions March 2023

 +======+==+=========+
 | Name | Explanation | Default |
 | | | Value |
 +======+==+=========+
 | MAD | Moving Average Distance (number of intervals | 4 |
 | | to take into account for the moving average) | |
 +------+--+---------+
 | ID | Interval duration at which the algorithm | 1 |
 | | reevaluates stability | second |
 +------+--+---------+
 | TMP | Trimmed Mean Percentage to be trimmed | 95% |
 +------+--+---------+
 | SDT | Standard Deviation Tolerance for stability | 5% |
 | | detection | |
 +------+--+---------+
 | MNP | Maximum number of parallel transport-layer | 16 |
 | | connections | |
 +------+--+---------+
 | MPS | Maximum responsiveness probes per second | 100 |
 +------+--+---------+
 | PTC | Percentage of Total Capacity the probes are | 5% |
 | | allowed to consume | |
 +------+--+---------+

 Table 1

4.3. Measuring Responsiveness

 Measuring responsiveness while achieving working conditions is a
 process of continuous measurement. It requires a sufficiently large
 sample-size to have confidence in the results.

 The measurement of the responsiveness happens by sending probe-
 requests. There are two types of probe requests:

 1. A HTTP GET request on a separate connection ("foreign probes").
 This test mimics the time it takes for a web browser to connect
 to a new web server and request the first element of a web page
 (e.g., "index.html"), or the startup time for a video streaming
 client to launch and begin fetching media.

Paasch, et al. Expires 14 September 2023 [Page 10]

Internet-Draft Responsiveness under Working Conditions March 2023

 2. A HTTP GET request multiplexed on the load-generating connections
 ("self probes"). This test mimics the time it takes for a video
 streaming client to skip ahead to a different chapter in the same
 video stream, or for a navigation client to react and fetch new
 map tiles when the user scrolls the map to view a different area.
 In a well functioning system fetching new data over an existing
 connection should take less time than creating a brand new TLS
 connection from scratch to do the same thing.

 Foreign probes will provide 3 sets of data-points. First, the
 duration of the TCP-handshake (noted hereafter as tcp_f). Second,
 the TLS round-trip-time (noted tls_f). For this, it is important to
 note that different TLS versions have a different number of round-
 trips. Thus, the TLS establishment time needs to be normalized to
 the number of round-trips the TLS handshake takes until the
 connection is ready to transmit data. And third, the HTTP elapsed
 time between issuing the GET request for a 1-byte object and
 receiving the entire response (noted http_f).

 Self probes will provide a single data-point for the duration of time
 between when the HTTP GET request for the 1-byte object is issued on
 the load-generating connection and the full HTTP response has been
 received (noted http_s).

 tcp_f, tls_f, http_f and http_s are all measured in milliseconds.

 The more probes that are sent, the more data available for
 calculation. In order to generate as much data as possible, the
 Responsiveness Test specifies that a client issue these probes
 regularly. There is, however, a risk that on low-capacity networks
 the responsiveness probes themselves will consume a significant
 amount of the capacity. Because the test mandates first saturating
 capacity before probing for responsiveness, we are able to accurately
 estimate how much of the capacity the responsiveness probes will
 consume and never send more probes than the network can handle.

 Limiting the data used by probes can be done by providing an estimate
 of the number of bytes exchanged for a responsiveness probe. Taking
 TCP and TLS overheads into account, we can estimate the amount of
 data exchanged for a probe on a foreign connection to be around 5000
 bytes. On load-generating connections we can expect an overhead of
 no more than 1000 bytes.

Paasch, et al. Expires 14 September 2023 [Page 11]

Internet-Draft Responsiveness under Working Conditions March 2023

 Given this information, we recommend that each responsiveness probing
 interval does not send more than MPS (Maximum responsiveness Probes
 per Second - default to 100) probes per second. The probes should be
 spread out equally over the duration of the interval with an equal
 split between foreign and different load-generating connections. For
 the probes on load-generating connections, the connection should be
 selected randomly for each probe.

 This would result in a total amount of data per second of 300 KB or
 2400Kb, meaning a total capacity utilization of 2400 Kbps for the
 probing.

 On high-speed networks, this will provide a significant amount of
 samples, while at the same time minimizing the probing overhead.
 However, on severely capacity-constrained networks the probing
 traffic could consume a significant portion of the available
 capacity. The Responsiveness Test must adjust its probing frequency
 in such a way that the probing traffic does not consume more than PTC
 (Percentage of Total Capacity - default to 5%) of the available
 capacity.

4.3.1. Aggregating the Measurements

 The algorithm produces sets of 4 times for each probe, namely: tcp_f,
 tls_f, http_f, http_l (from the previous section). The
 responsiveness evolves over time as buffers gradually reach
 saturation. Once the buffers are saturated responsiveness is stable
 over time. Thus, the aggregation of the measurements considers the
 last MAD (Moving Average Distance - default to 4) intervals worth of
 completed responsiveness probes.

 Over the timeframe of these intervals a potentially large number of
 samples has been collected. These may be affected by noise in the
 measurements, and outliers. Thus, to aggregate these we suggest to
 use a trimmed mean at the TMP (Trimmed Mean Percentage - default to
 95%) percentile, thus providing the following numbers: TM(tcp_f),
 TM(tls_f), TM(http_f), TM(http_l).

 The responsiveness is then calculated as the weighted mean:

 Responsiveness = 60000 /
 (1/6*(TM(tcp_f) + TM(tls_f) + TM(http_f)) + 1/2*TM(http_s))

 This responsiveness value presents round-trips per minute (RPM).

Paasch, et al. Expires 14 September 2023 [Page 12]

Internet-Draft Responsiveness under Working Conditions March 2023

4.4. Final Algorithm

 Considering the previous two sections, where we explain what the
 meaning of working conditions is and the definition of
 responsiveness, we can design the final algorithm. In order to
 measure the worst-case latency we need to transmit traffic at the
 full capacity of the path as well as ensure the buffers are filled to
 the maximum. We can achieve this by continuously adding HTTP
 sessions to the pool of connections in a ID (Interval duration -
 default to 1 second) interval. This will ensure that we quickly
 reach capacity and full buffer occupancy. First, the algorithm
 reaches stability for the goodput. Once goodput stability has been
 achieved, responsiveness probes are being transmitted until
 responsiveness stability is reached.

 We consider both, goodput and responsiveness to be stable, when the
 standard deviation of the past MAD intervals is within SDT (Standard
 Deviation Tolerance - default to 5%) of the last of the moving
 averages.

 The following algorithm reaches working conditions of a network by
 using HTTP/2 upload (POST) or download (GET) requests of infinitely
 large files. The algorithm is the same for upload and download and
 uses the same term "load-generating connection" for each. The
 actions of the algorithm take place at regular intervals. For the
 current draft the interval is defined as one second.

 Where

 * i: The index of the current interval. The variable i is
 initialized to 0 when the algorithm begins and increases by one
 for each interval.

 * moving average aggregate goodput at interval p: The number of
 total bytes of data transferred within interval p and the three
 immediately preceding intervals, divided by four times the
 interval duration.

 the steps of the algorithm are:

 * Create a load-generating connection.

 * At each interval:

 - Create an additional load-generating connection.

 - If goodput has not saturated:

Paasch, et al. Expires 14 September 2023 [Page 13]

Internet-Draft Responsiveness under Working Conditions March 2023

 o Compute the moving average aggregate goodput at interval i
 as current_average.

 o If the standard deviation of the past MAD average goodput
 values is less than SDT of the current_average, declare
 saturation and move on to probe responsiveness.

 - If goodput has saturated:

 o Compute the responsiveness at interval i as
 current_responsiveness.

 o If the standard deviation of the past MAD responsiveness
 values is less than SDT of the current_responsiveness,
 declare saturation and report current_responsiveness.

 In Section 3, it is mentioned that one of the goals is that the test
 finishes within 20 seconds. It is left to the implementation what to
 do when stability is not reached within that time-frame. For
 example, an implementation might gather a provisional responsiveness
 measurement or let the test run for longer.

 Finally, if at any point one of these connections terminates with an
 error, the test should be aborted.

4.4.1. Confidence of test-results

 As described above, a tool running the algorithm typically defines a
 time-limit for the execution of each of the stages. For example, if
 the tool allocates a total run-time of 40 seconds, and it executes a
 full downlink followed by a uplink test, it may allocate 10 seconds
 to each of the saturation-stages (downlink capacity saturation,
 downlink responsiveness saturation, uplink capacity saturation,
 uplink responsiveness saturation).

 As the different stages may or may not reach stability, we can define
 a "confidence score" for the different metrics (capacity and
 responsiveness) the methodology was able to measure.

 We define "Low" confidence in the result if the algorithm was not
 even able to execute 4 iterations of the specific stage. Meaning,
 the moving average is not taking the full window into account.

 We define "Medium" confidence if the algorithm was able to execute at
 least 4 iterations, but did not reach stability based on standard
 deviation tolerance.

Paasch, et al. Expires 14 September 2023 [Page 14]

Internet-Draft Responsiveness under Working Conditions March 2023

 We define "High" confidence if the algorithm was able to fully reach
 stability based on the defined standard deviation tolerance.

 It must be noted that depending on the chosen standard deviation
 tolerance or other paramenters of the methodology and the network-
 environment it may be that a measurement never converges to a stable
 point. This is expected and part of the dynamic nature of networking
 and the accompanying measurement inaccuracies. Which is why the
 importance of imposing a time-limit is so crucial, together with an
 accurate depiction of the "confidence" the methodology was able to
 generate.

5. Interpreting responsiveness results

 The described methodology uses a high-level approach to measure
 responsiveness. By executing the test with regular HTTP requests a
 number of elements come into play that will influence the result.
 Contrary to more traditional measurement methods the responsiveness
 metric is not only influenced by the properties of the network but
 can significantly be influenced by the properties of the client and
 the server implementations. This section describes how the different
 elements influence responsiveness and how a user may differentiate
 them when debugging a network.

5.1. Elements influencing responsiveness

 Due to the HTTP-centric approach of the measurement methodology a
 number of factors come into play that influence the results. Namely,
 the client-side networking stack (from the top of the HTTP-layer all
 the way down to the physical layer), the network (including potential
 transparent HTTP "accelerators"), and the server-side networking
 stack. The following outlines how each of these contributes to the
 responsiveness.

5.1.1. Client side influence

 As the driver of the measurement, the client-side networking stack
 can have a large influence on the result. The biggest influence of
 the client comes when measuring the responsiveness in the uplink
 direction. Load-generation will cause queue-buildup in the transport
 layer as well as the HTTP layer. Additionally, if the network’s
 bottleneck is on the first hop, queue-buildup will happen at the
 layers below the transport stack (e.g., NIC firmware).

 Each of these queue build-ups may cause latency and thus low
 responsiveness. A well designed networking stack would ensure that
 queue-buildup in the TCP layer is kept at a bare minimum with
 solutions like TCP_NOTSENT_LOWAT [draft-ietf-tcpm-rfc793bis]. At the

Paasch, et al. Expires 14 September 2023 [Page 15]

Internet-Draft Responsiveness under Working Conditions March 2023

 HTTP/2 layer it is important that the load-generating data is not
 interfering with the latency-measuring probes. For example, the
 different streams should not be stacked one after the other but
 rather be allowed to be multiplexed for optimal latency. The queue-
 buildup at these layers would only influence latency on the probes
 that are sent on the load-generating connections.

 Below the transport layer many places have a potential queue build-
 up. It is important to keep these queues at reasonable sizes or that
 they implement techniques like FQ-Codel. Depending on the techniques
 used at these layers, the queue build-up can influence latency on
 probes sent on load-generating connections as well as separate
 connections. If flow-queuing is used at these layers, the impact on
 separate connections will be negligible.

5.1.2. Network influence

 The network obviously is a large driver for the responsiveness
 result. Propagation delay from the client to the server as well as
 queuing in the bottleneck node will cause latency. Beyond these
 traditional sources of latency, other factors may influence the
 results as well. Many networks deploy transparent TCP Proxies,
 firewalls doing deep packet-inspection, HTTP "accelerators",... As
 the methodology relies on the use of HTTP/2, the responsiveness
 metric will be influenced by such devices as well.

 The network will influence both kinds of latency probes that the
 responsiveness tests sends out. Depending on the network’s use of
 Smart Queue Management and whether this includes flow-queuing or not,
 the latency probes on the load-generating connections may be
 influenced differently than the probes on the separate connections.

5.1.3. Server side influence

 Finally, the server-side introduces the same kind of influence on the
 responsiveness as the client-side, with the difference that the
 responsiveness will be impacted during the downlink load generation.

5.2. Root-causing Responsiveness

 Once a responsiveness result has been generated one might be tempted
 to try to localize the source of a potential low responsiveness. The
 responsiveness measurement is however aimed at providing a quick,
 top-level view of the responsiveness under working conditions the way
 end-users experience it. Localizing the source of low responsiveness
 involves however a set of different tools and methodologies.

Paasch, et al. Expires 14 September 2023 [Page 16]

Internet-Draft Responsiveness under Working Conditions March 2023

 Nevertheless, the Responsiveness Test allows to gain some insight
 into what the source of the latency is. The previous section
 described the elements that influence the responsiveness. From there
 it became apparent that the latency measured on the load-generating
 connections and the latency measured on separate connections may be
 different due to the different elements.

 For example, if the latency measured on separate connections is much
 less than the latency measured on the load-generating connections, it
 is possible to narrow down the source of the additional latency on
 the load-generating connections. As long as the other elements of
 the network don’t do flow-queueing, the additional latency must come
 from the queue build-up at the HTTP and TCP layer. This is because
 all other bottlenecks in the network that may cause a queue build-up
 will be affecting the load-generating connections as well as the
 separate latency probing connections in the same way.

6. Responsiveness Test Server API

 The responsiveness measurement is built upon a foundation of standard
 protocols: IP, TCP, TLS, HTTP/2. On top of this foundation, a
 minimal amount of new "protocol" is defined, merely specifying the
 URLs that used for GET and PUT in the process of executing the test.

 Both the client and the server MUST support HTTP/2 over TLS. The
 client MUST be able to send a GET request and a POST. The server
 MUST be able to respond to both of these HTTP commands. The server
 MUST have the ability to provide content upon a GET request. The
 server MUST use a packet scheduling algorithm that minimizes internal
 queueing to avoid affecting the client’s measurement.

 As clients and servers become deployed that use L4S congestion
 control (e.g., TCP Prague with ECT(1) packet marking), for their
 normal traffic when it is available, and fall back to traditional
 loss-based congestion controls (e.g., Reno or CUBIC) otherwise, the
 same strategy SHOULD be used for Responsiveness Test traffic. This
 is RECOMMENDED so that the synthetic traffic generated by the
 Responsiveness Test mimics real-world traffic for that server.

 Delay-based congestion-control algorithms (e.g., Vegas, FAST, BBR)
 SHOULD NOT be used for Responsiveness Test traffic because they take
 much longer to discover the depth of the bottleneck buffers. Delay-
 based congestion-control algorithms seek to mitigate the effects of
 bufferbloat, by detecting and responding to early signs of increasing
 round-trip delay, and reducing the amount of data they have in flight
 before the bottleneck buffer fills up and overflows. In a world
 where bufferbloat is common, this is a pragmatic mitigation to allow
 software to work better in that environment. However, that approach

Paasch, et al. Expires 14 September 2023 [Page 17]

Internet-Draft Responsiveness under Working Conditions March 2023

 does not fix the underlying problem of bufferbloat; it merely avoids
 it in some cases, and allows the problem in the network to persist.
 For a diagnostic tool made to identify symptoms of bufferbloat in the
 network so that they can be fixed, using a transport protocol
 explicitly designed to mask those symptoms would be a poor choice,
 and would require the test to run for much longer to deliver the same
 results.

 The server MUST respond to 4 URLs:

 1. A "small" URL/response: The server must respond with a status
 code of 200 and 1 byte in the body. The actual message content
 is irrelevant. The server SHOULD specify the content-type as
 application/octet-stream. The server SHOULD minimize the size,
 in bytes, of the response fields that are encoded and sent on the
 wire.

 2. A "large" URL/response: The server must respond with a status
 code of 200 and a body size of at least 8GB. The server SHOULD
 specify the content-type as application/octet-stream. The body
 can be bigger, and may need to grow as network speeds increases
 over time. The actual message content is irrelevant. The client
 will probably never completely download the object, but will
 instead close the connection after reaching working condition and
 making its measurements.

 3. An "upload" URL/response: The server must handle a POST request
 with an arbitrary body size. The server should discard the
 payload. The actual POST message content is irrelevant. The
 client will probably never completely upload the object, but will
 instead close the connection after reaching working condition and
 making its measurements.

 4. A .well-known URL [RFC8615] which contains configuration
 information for the client to run the test (See Section 7,
 below.)

 The client begins the responsiveness measurement by querying for the
 JSON [RFC8259] configuration. This supplies the URLs for creating
 the load-generating connections in the upstream and downstream
 direction as well as the small object for the latency measurements.

Paasch, et al. Expires 14 September 2023 [Page 18]

Internet-Draft Responsiveness under Working Conditions March 2023

7. Responsiveness Test Server Discovery

 It makes sense for a service provider (either an application service
 provider like a video conferencing service or a network access
 provider like an ISP) to host Responsiveness Test Server instances on
 their network so customers can determine what to expect about the
 quality of their connection to the service offered by that provider.
 However, when a user performs a Responsiveness Test and determines
 that they are suffering from poor responsiveness during the
 connection to that service, the logical next questions might be,

 1. "What’s causing my poor performance?"

 2. "Is it poor buffer management by my ISP?"

 3. "Is it poor buffer management in my home Wi-Fi Access point?"

 4. "Something to do with the service provider?"

 5. "Something else entirely?"

 To help an end user answer these questions, it will be useful for
 test clients to be able to easily discover Responsiveness Test Server
 instances running in various places in the network (e.g., their home
 router, their Wi-Fi access point, their ISP’s head-end equipment,
 etc).

 Consider this example scenario: A user has a cable modem service
 offering 100 Mb/s download speed, connected via gigabit Ethernet to
 one or more Wi-Fi access points in their home, which then offer
 service to Wi-Fi client devices at different rates depending on
 distance, interference from other traffic, etc. By having the cable
 modem itself host a Responsiveness Test Server instance, the user can
 then run a test between the cable modem and their computer or
 smartphone, to help isolate whether bufferbloat they are experiencing
 is occurring in equipment inside the home (like their Wi-Fi access
 points) or somewhere outside the home.

7.1. Well-Known Uniform Resource Identifier (URI) For Test Server
 Discovery

 Any organization that wishes to host their own instance of a
 Responsiveness Test Server can advertise that capability by hosting
 at the network quality well-known URI a resource whose content type
 is application/json and contains a valid JSON object meeting the
 following criteria:

Paasch, et al. Expires 14 September 2023 [Page 19]

Internet-Draft Responsiveness under Working Conditions March 2023

 {
 "version": 1,
 "urls": {
 "large_download_url":"https://nq.example.com/api/v1/large",
 "small_download_url":"https://nq.example.com/api/v1/small",
 "upload_url": "https://nq.example.com/api/v1/upload"
 }
 "test_endpoint": "hostname123.provider.com"
 }

 The server SHALL specify the content-type of the resource at the
 well-known URI as application/json.

 The content of the "version" field SHALL be "1". Integer values
 greater than "1" are reserved for future versions of this protocol.
 The content of the "large_download_url", "small_download_url", and
 "upload_url" SHALL all be validly formatted "http" or "https" URLs.
 See above for the semantics of the fields. All of the fields in the
 sample configuration are required except "test_endpoint". If the
 test server provider can pin all of the requests for a test run to a
 specific host in the service (for a particular run), they can specify
 that host name in the "test_endpoint" field.

 For purposes of registration of the well-known URI [RFC8615], the
 application name is "nq". The media type of the resource at the
 well-known URI is "application/json" and the format of the resource
 is as specified above. The URI scheme is "https". No additional
 path components, query strings or fragments are valid for this well-
 known URI.

7.2. DNS-Based Service Discovery for Test Server Discovery

 To further aid the test client in discovering instances of the
 Responsiveness Test Server, organizations wishing to host their own
 instances of the Test Server MAY advertise their availability using
 DNS-Based Service Discovery [RFC6763] using conventional, unicast DNS
 [RFC1034] or multicast DNS [RFC6762] on the organization network’s
 local link(s).

 The Responsiveness Test Service instances should advertise using the
 service type [RFC6335] "_nq._tcp". Population of the appropriate DNS
 zone with the relevant unicast discovery records can be performed
 automatically using a Discovery Proxy [RFC8766], or in some scenarios
 simply by having a human administrator manually enter the required
 records.

Paasch, et al. Expires 14 September 2023 [Page 20]

Internet-Draft Responsiveness under Working Conditions March 2023

7.2.1. Example

 An obscure service provider hosting a Responsiveness Test Server
 instance for their organization (obs.cr) on the "rpm.obs.cr" host
 would return the following answers to PTR and SRV conventional DNS
 queries:

 $ nslookup -q=ptr _nq._tcp.obs.cr.
 Non-authoritative answer:
 _nq._tcp.obs.crname = rpm._nq._tcp.obs.cr.
 $ nslookup -q=srv rpm._nq._tcp.obs.cr.
 Non-authoritative answer:
 rpm._nq._tcp.obs.crservice = 0 0 443 rpm.obs.cr.

 Given those conventional DNS query responses, the client would
 proceed to access the rpm.obs.cr host on port 443 at the .well-known/
 nq well-known URI to begin the test.

8. Security Considerations

 TBD

9. IANA Considerations

 IANA has been requested to record the service type "_nq._tcp"
 (Network Quality) for advertising and discovery of Responsiveness
 Test Server instances.

10. Acknowledgments

 Special thanks go to Jeroen Schickendantz for his tireless
 enthousiasm around the project and his contributions to this I-D and
 the development of the Go responsiveness measurement tool. We would
 also like to thank Rich Brown for his editorial pass over this I-D.
 We also thank Erik Auerswald, Matt Matthis and Omer Shapira for their
 constructive feedback on the I-D.

11. Informative References

 [Bufferbloat]
 Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in
 the Internet", Communications of the ACM, Volume 55,
 Number 1 (2012) , n.d..

 [draft-ietf-tcpm-rfc793bis]
 Eddy, W., "Transmission Control Protocol (TCP)
 Specification", Internet Engineering Task Force , n.d..

Paasch, et al. Expires 14 September 2023 [Page 21]

Internet-Draft Responsiveness under Working Conditions March 2023

 [RFC0793] Postel, J., "Transmission Control Protocol", RFC 793,
 DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8033] Pan, R., Natarajan, P., Baker, F., and G. White,
 "Proportional Integral Controller Enhanced (PIE): A
 Lightweight Control Scheme to Address the Bufferbloat
 Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,
 <https://www.rfc-editor.org/info/rfc8033>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8290] Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
 J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
 and Active Queue Management Algorithm", RFC 8290,
 DOI 10.17487/RFC8290, January 2018,
 <https://www.rfc-editor.org/info/rfc8290>.

 [RFC8615] Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

 [RFC8766] Cheshire, S., "Discovery Proxy for Multicast DNS-Based
 Service Discovery", RFC 8766, DOI 10.17487/RFC8766, June
 2020, <https://www.rfc-editor.org/info/rfc8766>.

Paasch, et al. Expires 14 September 2023 [Page 22]

Internet-Draft Responsiveness under Working Conditions March 2023

 [RFC9330] Briscoe, B., Ed., De Schepper, K., Bagnulo, M., and G.
 White, "Low Latency, Low Loss, and Scalable Throughput
 (L4S) Internet Service: Architecture", RFC 9330,
 DOI 10.17487/RFC9330, January 2023,
 <https://www.rfc-editor.org/info/rfc9330>.

Appendix A. Example Server Configuration

 This section shows fragments of sample server configurations to host
 an responsiveness measurement endpoint.

A.1. Apache Traffic Server

 Apache Traffic Server starting at version 9.1.0 supports
 configuration as a responsiveness server. It requires the generator
 and the statichit plugin.

 The sample remap configuration file then is:

 map https://nq.example.com/api/v1/config \
 http://localhost/ \
 @plugin=statichit.so \
 @pparam=--file-path=config.example.com.json \
 @pparam=--mime-type=application/json

 map https://nq.example.com/api/v1/large \
 http://localhost/cache/8589934592/ \
 @plugin=generator.so

 map https://nq.example.com/api/v1/small \
 http://localhost/cache/1/ \
 @plugin=generator.so

 map https://nq.example.com/api/v1/upload \
 http://localhost/ \
 @plugin=generator.so

Authors’ Addresses

 Christoph Paasch
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America
 Email: cpaasch@apple.com

Paasch, et al. Expires 14 September 2023 [Page 23]

Internet-Draft Responsiveness under Working Conditions March 2023

 Randall Meyer
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America
 Email: rrm@apple.com

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America
 Email: cheshire@apple.com

 Will Hawkins
 University of Cincinnati
 Email: hawkinwh@ucmail.uc.edu

Paasch, et al. Expires 14 September 2023 [Page 24]

