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Abstract

   For many years, a lack of responsiveness, variously called lag,

   latency, or bufferbloat, has been recognized as an unfortunate, but

   common symptom in today’s networks.  Even after a decade of work on

   standardizing technical solutions, it remains a common problem for

   the end users.

   Everyone "knows" that it is "normal" for a video conference to have

   problems when somebody else at home is watching a 4K movie or

   uploading photos from their phone.  However, there is no technical

   reason for this to be the case.  In fact, various queue management

   solutions (fq_codel, cake, PIE) have solved the problem.

   Our networks remain unresponsive, not from a lack of technical

   solutions, but rather a lack of awareness of the problem.  We believe

   that creating a tool whose measurement matches people’s every day

   experience will create the necessary awareness, and result in a

   demand for products that solve the problem.

   This document specifies the "RPM Test" for measuring responsiveness.

   It uses common protocols and mechanisms to measure user experience

   especially when the network is under working conditions.  The

   measurement is expressed as "Round-trips Per Minute" (RPM) and should

   be included with throughput (up and down) and idle latency as

   critical indicators of network quality.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute
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   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 5, 2022.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect

   to this document.  Code Components extracted from this document must

   include Simplified BSD License text as described in Section 4.e of

   the Trust Legal Provisions and are provided without warranty as

   described in the Simplified BSD License.
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1.  Introduction

   For many years, a lack of responsiveness, variously called lag,

   latency, or bufferbloat, has been recognized as an unfortunate, but

   common symptom in today’s networks [Bufferbloat].  Solutions like

   fq_codel [RFC8290] or PIE [RFC8033] have been standardized and are to

   some extent widely implemented.  Nevertheless, people still suffer

   from bufferbloat.

   Although significant, the impact on user experience can be transitory

   - that is, its effect is not always present.  Whenever a network is

   actively being used at its full capacity, buffers can fill up and

   create latency for traffic.  The duration of those full buffers may

   be brief: a medium-sized file transfer, like an email attachment or

   uploading photos, can create bursts of latency spikes.  An example of

   this is lag occurring during a videoconference, where a connection is

   briefly shown as unstable.

   These short-lived disruptions make it hard to narrow down the cause.

   We believe that it is necessary to create a standardized way to

   measure and express responsiveness.

   Existing network measurement tools could incorporate a responsiveness

   measurement into their set of metrics.  Doing so would also raise the

   awareness of the problem and make the standard "network quality

   measures" of throughput, idle latency, and responsiveness.

1.1.  Terminology

   A word about the term "bufferbloat" - the undesirable latency that

   comes from a router or other network equipment buffering too much

   data.  This document uses the term as a general description of bad

   latency, using more precise wording where warranted.

   "Latency" is a poor measure of responsiveness, since it can be hard

   for the general public to understand.  The units are unfamiliar

   ("what is a millisecond?") and counterintuitive ("100 msec - that

   sounds good - it’s only a tenth of a second!").

   Instead, we create the term "Responsiveness under working conditions"

   to make it clear that we are measuring all, not just idle,

   conditions, and use "round-trips per minute" as the metric.  The

   advantage of round-trips per minute are two-fold: First, it allows
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   for a metric that is "the higher the better".  This kind of metric is

   often more intuitive for end-users.  Second, the range of the values

   tends to be around the 4-digit integer range which is also a value

   easy to compare and read, again allowing for a more intuitive use.

   Finally, we abbreviate the measurement to "RPM", a wink to the

   "revolutions per minute" that we use for cars.

   This document defines an algorithm for the "RPM Test" that explicitly

   measures responsiveness under working conditions.

2.  Design Constraints

   There are many challenges around measurements on the Internet.  They

   include the dynamic nature of the Internet, the diverse nature of the

   traffic, the large number of devices that affect traffic, and the

   difficulty of attaining appropriate measurement conditions.

   Internet paths are changing all the time.  Daily fluctuations in the

   demand make the bottlenecks ebb and flow.  To minimize the

   variability of routing changes, it’s best to keep the test duration

   relatively short.

   TCP and UDP traffic, or traffic on ports 80 and 443, may take

   significantly different paths on the Internet and be subject to

   entirely different Quality of Service (QoS) treatment.  A good test

   will use standard transport layer traffic - typical for people’s use

   of the network - that is subject to the transport’s congestion

   control that might reduce the traffic’s rate and thus its buffering

   in the network.

   Traditionally, one thinks of bufferbloat happening on the routers and

   switches of the Internet.  However, the networking stacks of the

   clients and servers can have huge buffers.  Data sitting in TCP

   sockets or waiting for the application to send or read causes

   artificial latency, and affects user experience the same way as

   "traditional" bufferbloat.

   Finally, it is important to note that queueing only happens behind a

   slow "bottleneck" link in the network, and only occurs when

   sufficient traffic is present.  The RPM Test must ensure that buffers

   are actually full for a sustained period, and only then make repeated

   latency measurements in this particular state.

3.  Goals

   The algorithm described here defines an RPM Test that serves as a

   good proxy for user experience.  This means:
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   1.  Today’s Internet traffic primarily uses HTTP/2 over TLS.  Thus,

       the algorithm should use that protocol.

       As a side note: other types of traffic are gaining in popularity

       (HTTP/3) and/or are already being used widely (RTP).  Traffic

       prioritization and QoS rules on the Internet may subject traffic

       to completely different paths: these could also be measured

       separately.

   2.  The Internet is marked by the deployment of countless middleboxes

       like transparent TCP proxies or traffic prioritization for

       certain types of traffic.  The RPM Test must take into account

       their effect on DNS-request [RFC1035], TCP-handshake [RFC0793],

       TLS-handshake, and request/response.

   3.  The test result should be expressed in an intuitive, nontechnical

       form.

   4.  Finally, to be useful to a wide audience, the measurement should

       finish within a short time frame.  Our target is 20 seconds.

4.  Measuring Responsiveness Under Working Conditions

   To make an accurate measurement, the algorithm must reliably put the

   network in a state that represents those "working conditions".  Once

   the network has reached that state, the algorithm can measure its

   responsiveness.  The following explains how the former and the latter

   are achieved.

4.1.  Working Conditions

   There are many different ways to define the state of "working

   conditions" to measure responsiveness.  There is no one true answer

   to this question.  It is a tradeoff between using realistic traffic

   patterns and pushing the network to its limits.

   In this document we aim to generate a realistic traffic pattern by

   using standard HTTP transactions but exploring the worst-case

   scenario by creating multiple of these transactions and using very

   large data objects in these HTTP transactions.

   This allows to create a stable state of working conditions during

   which the network is used at its nearly full capacity, without

   generating DoS-like traffic patterns (e.g., UDP flooding).  When

   reaching these stable conditions (called "saturation") the latency on

   the network is stable enough to allow to measure the responsiveness

   during that time.  Thus, the algorithm must detect when the network

   is reaching this point of saturation to trigger the latency probes.
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   Finally, as end-user usage of the network evolves to newer protocols

   and congestion control algorithms, it is important that the working

   conditions also can evolve to continuously represent a realistic

   traffic pattern.

4.1.1.  From single-flow to multi-flow

   A single TCP connection may not be sufficient to reach the capacity

   of a path.  For example, the 4MB constraints on TCP window size

   constraints may not fill the pipe.  Additionally, traditional loss-

   based TCP congestion control algorithms react aggressively to packet

   loss by reducing the congestion window.  This reaction (intended by

   the protocol design) decreases the queueing within the network,

   making it hard to reach the path’s capacity.

   The goal of the RPM Test is to keep the network in working conditions

   in a sustained and persistent way.  It uses multiple TCP connections

   and gradually adds more TCP flows until saturation is reached.

4.1.2.  Parallel vs Sequential Uplink and Downlink

   Poor responsiveness can be caused by queues in either (or both) the

   upstream and the downstream direction.  Furthermore, both paths may

   differ significantly due to access link conditions (e.g., 5G

   downstream and LTE upstream) or the routing changes within the ISPs.

   To measure responsiveness under working conditions, the algorithm

   must explore both directions.

   One approach could be to measure responsiveness in the uplink and

   downlink in parallel.  It would allow for a shorter test run-time.

   However, a number of caveats come with measuring in parallel:

   o  Half-duplex links may not permit simultaneous uplink and downlink

      traffic.  This means the test might not reach the path’s capacity

      in both directions at once and thus not expose all the potential

      sources of low responsiveness.

   o  Debuggability of the results becomes harder: During parallel

      measurement it is impossible to differentiate whether the observed

      latency happens in the uplink or the downlink direction.

   Thus, we recommend testing uplink and downlink sequentially.

   Parallel testing is considered a future extension.
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4.1.3.  Reaching saturation

   The RPM Test gradually increases the number of TCP connections and

   measures "goodput" - the sum of actual data transferred across all

   connections in a unit of time.  When the goodput stops increasing, it

   means that the network is used at its full capacity, meaning the path

   is saturated.  At this point we are creating the worst-case scenario

   within the limits of the realistic traffic pattern.

   The algorithm notes that throughput gradually increases until TCP

   connections complete their TCP slow-start phase.  At that point,

   throughput eventually stalls usually due to receive window

   limitations.  The only means to further increase throughput is by

   adding more TCP connections to the pool of load-generating

   connections.  If new connections leave the throughput the same,

   saturation has been reached and - more importantly - the working

   condition is stable.

4.1.4.  Final "Working Conditions" Algorithm

   The following algorithm reaches working conditions of a network by

   using HTTP/2 upload (POST) or download (GET) requests of infinitely

   large files.  The algorithm is the same for upload and download and

   uses the same term "load-generating connection" for each.  The

   actions of the algorithm take place at regular intervals.  For the

   current draft the interval is defined as one (1) second.

   Where

   o  i: The index of the current interval. i is initialized to 0 when

      the algorithm begins and increases by one for each interval.

   o  instantaneous aggregate goodput at interval p: The number of total

      bytes of data transferred within interval p.  If p is less than 0,

      the number of total bytes of data transferred within the interval

      is considered to be 0.

   o  moving average aggregate goodput at interval p: The average of the

      number of total bytes of data transferred in the instantaneous

      average aggregate goodput at intervals p - x, for all 0<=x<4.

   o  moving average stability during the period between intervals b and

      e: Whether or not the differences between the moving average

      aggregate goodput at interval x and the moving average aggregate

      goodput at interval x+1 (for all b<=x<e) is less than 5%.

   the steps of the algorithm are:
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   o  Create four (4) load-generating connections.

   o  At each interval:

      *  Compute the instantaneous aggregate goodput at interval i.

      *  Compute the moving average aggregate goodput at interval i.

      *  If the moving average aggregate goodput at interval i is more

         than a 5% increase over the moving average aggregate goodput at

         interval i - 1, the network has not yet reached saturation.

         +  If no load-generating connections have been added within the

            last four (4) intervals, add four (4) more load-generating

            connections.

      *  Else, the network has reached saturation with the existing

         load-generating connections.  The current state is a candidate

         for stable working conditions.

         +  If a) there have been load-generating connections added in

            the past four (4) intervals and b) there has been moving

            average stability during the period between intervals i-4

            and i, then the network has reached stable saturation and

            the algorithm terminates.

         +  Otherwise, add four (4) more load-generating connections.

   In Section 3, it is mentioned that one of the goals is that the test

   finishes within 20 seconds.  It is left to the implementation what to

   do when saturation is not reached within that time-frame.  For

   example, an implementation might gather a provisional responsiveness

   measurement or let the test run for longer.

   Note: It is tempting to envision an initial base round-trip time

   (RTT) measurement and adjust the intervals as a function of that RTT.

   However, experiments have shown that this makes the saturation

   detection extremely unstable in low RTT environments.  In the

   situation where the "unloaded" RTT is in the single-digit millisecond

   range, yet the network’s RTT increases under load to more than a

   hundred milliseconds, the intervals become much too low to accurately

   drive the algorithm.

4.2.  Measuring Responsiveness

   Once the network is in a consistent working conditions, the RPM Test

   must "probe" the network multiple times to measure its

   responsiveness.
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   Each RPM Test probe measures:

   1.  The responsiveness of the different steps to create a new

       connection, all during working conditions.

       To do this, the test measures the time needed to make a DNS

       request, establish a TCP connection on port 443, establish a TLS

       context using TLS1.3 [RFC8446], and send and receive a one-byte

       object with a HTTP/2 GET request.  It repeats these steps

       multiple times for accuracy.

   2.  The responsiveness of the network and the client/server

       networking stacks for the load-generating connections themselves.

       To do this, the load-generating connections multiplex an HTTP/2

       GET request for a one-byte object to get the end-to-end latency

       on the connections that are using the network at full speed.

4.2.1.  Aggregating the Measurements

   The algorithm produces sets of 5 times for each probe, namely: DNS

   handshake, TCP handshake, TLS handshake, HTTP/2 request/response on

   separate (idle) connections, HTTP/2 request/response on load-

   generating connections.  This fine-grained data is useful, but not

   necessary for creating a useful metric.

   To create a single "Responsiveness" (e.g., RPM) number, this first

   iteration of the algorithm gives an equal weight to each of these

   values.  That is, it sums the five time values for each probe, and

   divides by the total number of probes to compute an average probe

   duration.  The reciprocal of this, normalized to 60 seconds, gives

   the Round-trips Per Minute (RPM).

4.2.2.  Statistical Confidence

   The number of probes necessary for statistical confidence is an open

   question.  One could imagine a computation of the variance and

   confidence interval that would drive the number of measurements and

   balance the accuracy with the speed of the measurement itself.

5.  Interpreting responsiveness results

   The described methodology uses a high-level approach to measure

   responsiveness.  By executing the test with regular HTTP requests a

   number of elements come into play that will influence the result.

   Contrary to more traditional measurement methods the responsiveness

   metric is not only influenced by the properties of the network but

   can significantly be influenced by the properties of the client and
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   the server implementations.  This section describes how the different

   elements influence responsiveness and how a user may differentiate

   them when debugging a network.

5.1.  Elements influencing responsiveness

   Due to the HTTP-centric approach of the measurement methodology a

   number of factors come into play that influence the results.  Namely,

   the client-side networking stack (from the top of the HTTP-layer all

   the way down to the physical layer), the network (including potential

   transparent HTTP "accelerators"), and the server-side networking

   stack.  The following outlines how each of these contributes to the

   responsiveness.

5.1.1.  Client side influence

   As the driver of the measurement, the client-side networking stack

   can have a large influence on the result.  The biggest influence of

   the client comes when measuring the responsiveness in the uplink

   direction.  Load-generation will cause queue-buildup in the transport

   layer as well as the HTTP layer.  Additionally, if the network’s

   bottleneck is on the first hop, queue-buildup will happen at the

   layers below the transport stack (e.g., NIC firmware).

   Each of these queue build-ups may cause latency and thus low

   responsiveness.  A well-designed networking stack would ensure that

   queue-buildup in the TCP layer layer is kept at a bare minimum with

   solutions like TCP_NOTSENT_LOWAT [draft-ietf-tcpm-rfc793bis].  At the

   HTTP/2 layer it is important that the load-generating data is not

   interfering with the latency-measuring probes.  For example, the

   different streams should not be stacked one after the other but

   rather be allowed to be multiplexed for optimal latency.  The queue-

   buildup at these layers would only influence latency on the probes

   that are sent on the load-generating connections.

   Below the transport layer many places have a potential queue build-

   up.  It is important to keep these queues at reasonable sizes or that

   they implement techniques like FQ-Codel.  Depending on the techniques

   used at these layers, the queue build-up can influence latency on

   probes sent on load-generating connections as well as separate

   connections.  If flow-queuing is used at these layers, the impact on

   separate connections will be negligible.

5.1.2.  Network influence

   The network obviously is a large driver for the responsiveness

   result.  Propagation delay from the client to the server as well as

   queuing in the bottleneck node will cause latency.  Beyond these
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   traditional sources of latency, other factors may influence the

   results as well.  Many networks deploy transparent TCP Proxies,

   firewalls doing deep packet-inspection, HTTP "accelerators",... As

   the methodology relies on the use of HTTP/2, the responsiveness

   metric will be influenced by such devices as well.

   The network will influence both kinds of latency probes that the

   responsiveness tests sends out.  Depending on the network’s use of

   Smart Queue Management and whether this includes flow-queuing or not,

   the latency probes on the load-generating connections may be

   influenced differently than the probes on the separate connections.

5.1.3.  Server side influence

   Finally, the server-side introduces the same kind of influence on the

   responsiveness as the client-side.  With the difference that the

   responsiveness will be impacted during the downlink load generation.

5.2.  Root-causing Responsiveness

   Once an RPM result has been generated one might be tempted to try to

   localize the source of a potential low responsiveness.  The

   responsiveness measurement is however aimed at providing a quick,

   top-level view of the responsiveness under working conditions the way

   end-users experience it.  Localizing the source of low responsiveness

   involves however a set of different tools and methodologies.

   Nevertheless, the responsiveness test allows to gain some insight

   into what the source of the latency is.  The previous section

   described the elements that influence the responsiveness.  From there

   it became apparent that the latency measured on the load-generating

   connections and the latency measured on separate connections may be

   different due to the different elements.

   For example, if the latency measured on separate connections is much

   less than the latency measured on the load-generating connections, it

   is possible to narrow down the source of the additional latency on

   the load-generating connections.  As long as the other elements of

   the network don’t do flow-queueing, the additional latency must come

   from the queue build-up at the HTTP and TCP layer.  This is because

   all other bottlenecks in the network that may cause a queue build-up

   will be affecting the load-generating connections as well as the

   separate latency probing connections in the same way.

Paasch, et al.          Expires September 5, 2022              [Page 11]



Internet-Draft   Responsiveness under Working Conditions      March 2022

6.  RPM Test Server API

   The RPM measurement uses standard protocols: no new protocol is

   defined.

   Both the client and the server MUST support HTTP/2 over TLS 1.3.  The

   client MUST be able to send a GET request and a POST.  The server

   MUST be able to respond to both of these HTTP commands.  Further, the

   server endpoint MUST be accessible through a hostname that can be

   resolved through DNS.  The server MUST have the ability to provide

   content upon a GET request.  Both client and server SHOULD use loss-

   based congestion controls like Cubic.  The server MUST use a packet

   scheduling algorithm that minimizes internal queueing to avoid

   affecting the client’s measurement.

   The server MUST respond to 4 URLs:

   1.  A "small" URL/response: The server must respond with a status

       code of 200 and 1 byte in the body.  The actual body content is

       irrelevant.

   2.  A "large" URL/response: The server must respond with a status

       code of 200 and a body size of at least 8GB.  The body can be

       bigger, and may need to grow as network speeds increases over

       time.  The actual body content is irrelevant.  The client will

       probably never completely download the object, but will instead

       close the connection after reaching working condition and making

       its measurements.

   3.  An "upload" URL/response: The server must handle a POST request

       with an arbitrary body size.  The server should discard the

       payload.

   4.  A configuration URL that returns a JSON [RFC8259] object with the

       information the client uses to run the test (sample below).

       Sample JSON:

{

  "version": 1,

  "urls": {

    "small_https_download_url": "https://networkquality.example.com/api/v1/small",

    "large_https_download_url": "https://networkquality.example.com/api/v1/large",

    "https_upload_url": "https://networkquality.example.com/api/v1/upload"

  }

}
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   The client begins the responsiveness measurement by querying for the

   JSON configuration.  This supplies the URLs for creating the load-

   generating connections in the upstream and downstream direction as

   well as the small object for the latency measurements.

7.  Security Considerations

   TBD

8.  IANA Considerations

   TBD
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