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Abstract

This document describes a set of state machines for EAP peer, EAP standalone authenticator (non-pass-
through), EAP backend authenticator (for use on Authentication, Authorization and Accounting (AAA)
servers), and EAP full authenticator (for both local and pass-through). This set of state machines shows
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how EAP can be implemented to support deployment in either a peer/AP or peer/AP/AAA Server environ-
ment. The peer and standalone authenticator machines are illustrative of how the EAP protocol defined in
[I-D.ietf-eap-rfc2284bis] may be implemented. The backend and full/pass-through authenticators illustrate
how EAP/AAA protocol support defined in [RFC3579] may be implemented. Where there are differences
[I-D.ietf-eap-rfc2284bis]/[RFC3579] are authoritative.

This document describes a state machine based on an EAP ”Switch” model. This model includes events
and actions for the interaction between the EAP Switch and EAP methods. A brief description of the EAP
”Switch” model is given in the Introduction section.

The State Machine and associated model are informative only. Implementations may achieve the same results
using different methods.
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1 Specification of Requirements

In this document, several words are used to signify the requirements of the specification. These words are
often capitalized. The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”,
”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to
be interpreted as described in [RFC2119].

2 The EAP Switch Model

This document offers a proposed state machine for RFCs [I-D.ietf-eap-rfc2284bis] and [RFC3579] . There
are state machines for the peer, the standalone authenticator, a backend authenticator and a full/pass-through
authenticator. Accompanying each state machine diagram is a description of the variables, the functions and
the states in the diagram. Whenever possible, the same notation has been used in each of the state machines.

An EAP authentication consists of one or more EAP methods in sequence followed by an EAP Success or
EAP Failure sent from the authenticator to the peer. The EAP Switches control negotiation of EAP methods
and sequences of methods.

At both the peer and authenticator one or more EAP methods exist. The EAP switches select which methods
each is willing to use, and negotiate between themselves to pick a method or sequence of methods.
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Peer Peer | Authenticator Auth
Method | Method

\ | /
\ | /
Peer | Auth
EAP <-----|----------> EAP
Switch | Switch

Figure 1: EAP Switch Model

Note that the methods may also have state machines. The details of these are outside the scope of this paper.

Peer | Authenticator | Backend
| / Local |
| / Method |

Peer | Auth | Backend
EAP --|-----> EAP | -> EAP
Switch | Switch | / Server

| \ |/
| \ pass-through|
| |

Figure 2: EAP Pass-Through Model

The Full/Pass-Through state machine allows a NAS or Edge Device to pass EAP Response messages to a
Backend Server where the Authentication Method resides. This paper includes a state machine for the EAP
authenticator that supports both local and pass-through methods as well as a state machine for the backend
authenticator existing at the AAA server. A simple ”Standalone” authenticator is also provided to show a
basic, non-pass-through authenticator’s behavior.

This document describes a set of State Machines that can manage EAP authentication from the peer to an
EAP method on the authenticator or from the peer through the authenticator pass-through method to the EAP
method on the Backend EAP server.

Some environments where EAP is used, such as PPP, may support peer-to-peer operation. That is, both parties
act as peers and authenticators at the same time, in two simultaneous and independent EAP conversations.
In this case, the implementation at each node has to perform demultiplexing of incoming EAP packets. EAP
packets with Code set to Response are delivered to the authenticator state machine and EAP packets with
Code set to Request, Success or Failure are delivered to the peer state machine.

The state diagrams presented in this document have been coordinated with the diagrams in [IEEE-802-1X-
REV]. The format of the diagrams is adapted from the format therein. The interface between the state ma-
chines defined here and the IEEE-802-1X-REV state machines is also explained in Appendix F of [IEEE-
802-1X-REV].
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3 Notational conventions used in state diagrams

3.1 Notational specifics

The following state diagrams have been completed based on the conventions specified in [IEEE-802-1X-
REV], section 8.2.1. The complete text is reproduced here:

State diagrams are used to represent the operation of the protocol by a number of cooperating state machines
each comprising a group of connected, mutually exclusive states. Only one state of each machine can be
active at any given time.

Each state is represented in the state diagram as a rectangular box, divided into two parts by a horizontal
line. The upper part contains the state identifier, written in upper case letters. The lower part contains any
procedures that are executed on entry to the state.

All permissible transitions between states are represented by arrows, the arrowhead denoting the direction
of the possible transition. Labels attached to arrows denote the condition(s) that must be met in order for
the transition to take place. All conditions are expressions that evaluate to TRUE or FALSE; if a condition
evaluates to TRUE, then the condition is met. The label UCT denotes an unconditional transition (i.e., UCT
always evaluates to TRUE). A transition that is global in nature (i.e., a transition that occurs from any of the
possible states if the condition attached to the arrow is met) is denoted by an open arrow; i.e., no specific state
is identified as the origin of the transition. When the condition associated with a global transition is met, it
supersedes all other exit conditions including UCT. The special global condition BEGIN supersedes all other
global conditions, and once asserted remains asserted until all state blocks have executed to the point that
variable assignments and other consequences of their execution remain unchanged.

On entry to a state, the procedures defined for the state (if any) are executed exactly once, in the order that they
appear on the page. Each action is deemed to be atomic; i.e., execution of a procedure completes before the
next sequential procedure starts to execute. No procedures execute outside of a state block. The procedures
in only one state block execute at a time, even if the conditions for execution of state blocks in different
state machines are satisfied, and all procedures in an executing state block complete execution before the
transition to and execution of any other state block occurs, i.e., the execution of any state block appears to be
atomic with respect to the execution of any other state block and the transition condition to that state from
the previous state is TRUE when execution commences. The order of execution of state blocks in different
state machines is undefined except as constrained by their transition conditions. A variable that is set to a
particular value in a state block retains this value until a subsequent state block executes a procedure that
modifies the value.

On completion of all of the procedures within a state, all exit conditions for the state (including all conditions
associated with global transitions) are evaluated continuously until one of the conditions is met. The label
ELSE denotes a transition that occurs if none of the other conditions for transitions from the state are met
(i.e., ELSE evaluates to TRUE if all other possible exit conditions from the state evaluate to FALSE). Where
two or more exit conditions with the same level of precedence become TRUE simultaneously, the choice as
to which exit condition causes the state transition to take place is arbitrary.

Where it is necessary to split a state machine description across more than one diagram, a transition between
two states that appear on different diagrams is represented by an exit arrow drawn with dashed lines, plus a
reference to the diagram that contains the destination state. Similarly, dashed arrows and a dashed state box
are used on the destination diagram to show the transition to the destination state. In a state machine that has
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been split in this way, any global transitions that can cause entry to states defined in one of the diagrams are
deemed to be potential exit conditions for all of the states of the state machine, regardless of which diagram
the state boxes appear in.

Should a conflict exist between the interpretation of a state diagram and either the corresponding global tran-
sition tables or the textual description associated with the state machine, the state diagram takes precedence.
The interpretation of the special symbols and operators used in the state diagrams is as defined in Section
3.2; these symbols and operators are derived from the notation of the C++ programming language, ISO/IEC
14882. If a boolean variable is described in this clause as being set it has or is assigned the value TRUE, if
reset or clear the value FALSE.

In addition to the above notation, there are a couple of clarifications specific to this document. First, all
boolean variables are initialized to FALSE before the state machine execution begins. Second, the following
notational shorthand is specific to this document:

• <variable> = <expression1> | <expression2> | ...
Execution of a statement of this form will result in <variable> having a value of exactly one of the
expressions. The logic for which of those expressions gets executed is outside of the state machine and
could be environmental, configurable, or based on another state machine such as that of the method.

3.2 State Machine Symbols

• ( )

Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of
actions within state boxes.

• ;

Used as a terminating delimiter for actions within state boxes. Where a state box contains multiple
actions, the order of execution follows the normal English language conventions for reading text.

• =

Assignment action. The value of the expression to the right of the operator is assigned to the variable to
the left of the operator. Where this operator is used to define multiple assignments, e.g., a = b = X the
action causes the value of the expression following the right-most assignment operator to be assigned
to all of the variables that appear to the left of the right-most assignment operator.

• !

Logical NOT operator.

• &&

Logical AND operator.

• ||
Logical OR operator.

• if...then...

Conditional action. If the Boolean expression following the if evaluates to TRUE, then the action
following the then is executed.
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• { statement 1, ... statement N }
Compound statement. Braces are used to group statements that are executed together as if they were a
single statement.

• !=

Inequality. Evaluates to TRUE if the expression to the left of the operator is not equal in value to the
expression to the right.

• ==

Equality. Evaluates to TRUE if the expression to the left of the operator is equal in value to the
expression to the right.

• <
Less than. Evaluates to TRUE if the value of the expression to the left of the operator is less than the
value of the expression to the right.

• >
Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater than
the value of the expression to the right.

• >=

Greater than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator is
either greater than or equal to the value of the expression to the right.

• +

Arithmetic addition operator.

• -

Arithmetic subtraction operator.

3.3 Document authority

Should a conflict exist between the interpretation of a state diagram and either the corresponding global tran-
sition tables or the textual description associated with the state machine, the state diagram takes precedence.
When a discrepancy occurs between any part of this document (text or diagram) and any of the related docu-
ments ( [I-D.ietf-eap-rfc2284bis], [RFC3579], etc.) the latter (the other document) is considered authoritative
and takes precedence.

4 Peer State Machine

The following is a diagram of the EAP peer state machine. Also included is an explanation of the primitives
and procedures referenced in the diagram, as well as a clarification of notation.
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IDLE


SEND_RESPONSE


lastId = reqId

lastRespData = eapRespData

eapReq = FALSE

eapResp = TRUE

idleWhile = ClientTimeout


UCT


DISABLED


INITIALIZE


selectedMethod = NONE

methodState = NONE

allowNotifications = TRUE

decision = FAIL

idleWhile = ClientTimeout

eapSuccess = FALSE

eapFail = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE


portEnabled


UCT


RETRANSMIT


eapRespData = lastRespData


eapReq


!portEnabled


NOTIFICATION


processNotify(eapReqData)

eapRespData = buildNotify(reqId)


else


rxReq &&

(reqId == lastId)


UCT


(methodState != CONT) &&

((rxFailure && decision != UNCOND_SUCC) ||


(rxSuccess && decision == FAIL)) &&

(reqId == lastId)


rxSuccess &&

(reqId == lastId) &&

(decision != FAIL)


UCT


UCT


GET_METHOD


if (allowMethod(reqMethod)) {

   selectedMethod = reqMethod

   methodState = INIT

} else {

   eapRespData = buildNak(reqId)

}


else


rxReq &&

(reqId != lastId) &&


(reqMethod ==

selectedMethod) &&


(methodState != DONE)


rxReq &&

(reqId != lastId) &&


(selectedMethod == NONE) &&

(reqMethod != IDENTITY) &&


(reqMethod != NOTIFICATION)


ignore


IDENTITY


processIdentity(eapReqData)

eapRespData = buildIdentity(reqId)


rxReq &&

(reqId != lastId) &&


(selectedMethod == NONE) &&

(reqMethod == IDENTITY)


rxReq &&

(reqId != lastId) &&


(reqMethod == NOTIFICATION) &&

allowNotifications


UCT


else


FAILURE


eapFail = TRUE


SUCCESS


if (eapKeyData != NONE)

   eapKeyAvailable = TRUE

eapSuccess = TRUE


(methodState == DONE) &&

(decision == FAIL)


selectedMethod == reqMethod


RECEIVED


(rxReq, rxSuccess, rxFailure, reqId, reqMethod) =

   parseEapReq(eapReqData)


METHOD


intCheck = m.integrityCheck(eapReqData)

if (intCheck) {

   m.process(eapReqData)

   methodState = CONT | MAY_CONT | DONE

   decision = FAIL | COND_SUCC | UNCOND_SUCC

   allowNotifications = TRUE | FALSE

   eapRespData = m.buildResp(reqId)

   
eapKeyData
 = NONE | m.getKey()

}


(altAccept && decision != FAIL) ||

(idleWhile == 0 &&


decision == UNCOND_SUCC)


altReject ||

(idleWhile == 0 &&


decision != UNCOND_SUCC) ||

(altAccept &&


methodState != CONT &&

decision == FAIL)


METHOD


ignore = m.check(eapReqData)

if (!ignore) {

   (methodState, decision, allowNotifications) =

      m.process(eapReqData)

   /* methodState is CONT, MAY_CONT, or 
DONE
 */

   /* decision is 
 FAIL
, 
COND_SUCC
, or 
UNCOND_SUCC
 */

   eapRespData = m.buildResp(reqId)

   if (m.isKeyAvailable())

      eapKeyData
  = m.getKey()

}


DISCARD


eapReq = FALSE

eapNoResp = TRUE


eapRestart && portEnabled


Figure 3: EAP Peer State Machine

(see draft-ietf-eap-statemachine-03.pdf for missing diagram or refer to Appendix A.1 if reading [.txt] version)
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4.1 Interface between peer state machine and lower layer

The lower layer presents messages to the EAP peer state machine by storing the packet in eapReqData and
setting the eapReq signal to TRUE. Note that despite the name of the signal, the lower layer does not actually
inspect the contents of the EAP packet (it could be a Success or Failure message instead of a Request).

When the EAP peer state machine has finished processing the message it sets either eapResp or eapNoResp.
If it sets eapResp, the corresponding response packet is stored in eapRespData. The lower layer is responsible
for actually transmitting this message. When the EAP peer state machine authentication is complete it will
set eapSuccess or eapFailure to indicate to the lower layer that the authentication has succeeded or failed.

4.1.1 Variables (lower layer to peer)

• eapReq (boolean)

Set to TRUE in lower layer, FALSE in peer state machine. Indicates there is a request available in the
lower layer.

• eapReqData (EAP packet)

Set in lower layer when eapReq is set to TRUE. The contents of the available request.

• portEnabled (boolean)

Indicates that the EAP peer state machine should be ready for communication. This is set to TRUE
when the EAP conversation is started by the lower layer. If at any point the communication port or
session is not available, portEnabled is set to FALSE and the state machine transitions to DISABLED.

• idleWhile (integer)

Outside timer used to indicate how long the peer has waited for a new (valid) request.

• altAccept (boolean)

Alternate indication of success, as described in [I-D.ietf-eap-rfc2284bis].

• altReject (boolean)

Alternate indication of failure, as described in [I-D.ietf-eap-rfc2284bis].

4.1.2 Variables (peer to lower layer)

• eapResp (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates there is a response to be sent.

• eapNoResp (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates the request has been processed,
but there is no response to send.

• eapSuccess (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates the Peer has reached the SUCCESS
state.
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• eapFail (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates the Peer has reached the FAILURE
state.

• eapRespData (EAP Packet)

Set in peer state machine when eapResp is set to TRUE. The EAP packet which is the response to send.

• eapKeyData (EAP Key)

Set in peer state machine when keying material becomes available. Set during the METHOD state.
Note that this document does not yet define the structure of the type ”EAP Key”. We expect it to be
defined in [I-D.ietf-eap-keying].

• eapKeyAvailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. The actual key is stored in eapKey-
Data.

4.1.3 Constants

• ClientTimeout (integer)

Configurable amount of time to wait for a valid request before aborting, initialized by implementation-
specific means (e.g. a configuration setting).

4.2 Interface between peer state machine and methods

IN: eapReqData (includes reqId)

OUT: ignore, eapRespData, allowNotifications, decision

IN/OUT: methodState, (method-specific state)

The following describes the interaction between the state machine and EAP methods.

If methodState==INIT, the method starts by initializing its own method-specific state.

Next, the method must decide whether to process the packet or silently discard it. If the packet looks like it
was not sent by the legitimate authenticator (for instance, it has invalid MIC, this case should never occur,
and the method treats MIC failures as non-fatal), the method can set ignore=FALSE. In this case, the method
should not modify any other variables.

If the method decides to process the packet, it behaves as follows.

• Updates its own method-specific state.

• If the method has derived keying material it wants to export, stores the keying material to eapKeyData.

• Creates a response packet (with the same identifier as the request), and stores it to eapRespData.

• Sets ignore=TRUE.
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Next, the method must update methodState and decision according to the following rules.

• methodState=CONT:

The method always continues at this point (and the peer wants to continue it). The decision variable is
always set to FAIL.

• methodState=MAY CONT:
At this point, the authenticator can decide either to continue the method or end the conversation. The
decision variable tells us what to do in the case the conversation ends. If the current situation does not
satisfy the peer’s security policy (that is, if the authenticator now decides to allow access, the peer will
not use it), set decision=FAIL. Otherwise, set decision=COND SUCC.

• methodState=DONE:

The method never continues at this point, (or the peer sees no point in continuing it).

If either (a) the authenticator has informed us that it will not allow access, or (b) we’re not willing to
talk to this authenticator (e.g. our security policy is not satisfied), set decision=FAIL. (Note that this
state can occur even if the method still has additional messages left, if continuing it can not change the
peer’s decision to success).
If both (a) the server has informed us that it will allow access and the next packet will be EAP Success,
and (b) we’re willing to use this access, set decision=UNCOND SUCC.

Otherwise, we do not know what the server’s decision is, but are willing to use the access if the server
allows. In this case, set decision=COND SUCC.

Finally, the method must set the allowNotifications variable. If the new methodState is either CONT or
MAY CONT, and the method specification does not forbid the use of Notification messages, set allowNotifi-
cations=TRUE. Otherwise, set allowNotifications=FALSE.

4.3 Peer state machine local variables

4.3.1 Long-term (maintained between packets)

• selectMethod (EAP Type)

Set in GET METHOD state. The method the peer believes to be currently ”in progress”

• methodState (enumeration)
As described above.

• lastId (integer)

Set in SEND RESPONSE state. The EAP identifier value of the last request.

• lastRespData (EAP packet)

Set in SEND RESPONSE state. The EAP packet last sent from the peer.

• decision (enumeration)

As described above

NOTE: EAP type can be normal type (0..253,255), or an extended type consisting of type 254, Vendor-Id,
and Vendor-Type.
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4.3.2 Short-term (not maintained between packets)

• rxReq (boolean)

Set in RECEIVED state. Indicates the current received packet is an EAP request.

• rxSuccess (boolean)

Set in RECEIVED state. Indicates the current received packet is an EAP Success.

• rxFailure (boolean)

Set in RECEIVED state. Indicates the current received packet is an EAP Failure.

• reqId (integer)

Set in RECEIVED state. The identifier value associated with the current EAP request.

• reqMethod (EAP type)

Set in RECEIVED state. The method type of the current EAP request

• ignore (boolean)

Set in METHOD state. Indicates whether the method has decided to accept the current packet.

4.4 Peer state machine procedures

• parseEapReq()

Determine the code, identifier value, and type of the current request. Also checks that the length field
is not longer than the received packet.

• processNotify()

Process the contents of Notification Request (for instance, display it to the user or log it).

• buildNotify()

Create the appropriate notification response.

• processIdentity()

Process the contents of Identity Request.

• buildIdentity()

Create the appropriate identity response.

• m.integrityCheck()

Method-specific procedure to test for the validity of a message.

• m.process()

Method procedure to parse and process a request for that method.

• m.getKey()

Method procedure to obtain key material for use by EAP or lower layers.
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4.5 Peer state machine states

• DISABLED

This state is reached anytime service from the lower layer is interrupted or unavailable. Immediate
transition to INITIALIZE occurs when the port becomes enabled.

• INITIALIZE

Initializes variables when the state machine is activated.

• IDLE

The state machine spends most of its time here, waiting for something to happen.

• RECEIVED

This state is entered when an EAP packet is received: the packet header is parsed here.

• GET METHOD

This state is entered when a request for a new type comes in: either the correct method is started, or a
Nak response is built.

• METHOD

The method processing happens here: the request from the authenticator is processed, and an appropri-
ate response packet is built.

• SEND RESPONSE

This state signals the lower layer that a response packet is ready to be sent.

• DISCARD

This state signals the lower layer that the request was discarded, and no response packet will be sent at
this time.

• IDENTITY:

Handles requests for Identity method, and builds a response.

• NOTIFICATION

Handles requests for Notification method, and builds a response.

• RETRANSMIT

Retransmits the previous response packet.

• SUCCESS

A final state indicating success.

• FAILURE

A final state indicating failure.
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UCT


UCT
ignore


IDLE


SEND_REQUEST


retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE


UCT


DISABLED


INITIALIZE


currentId = NONE

eapSuccess = FALSE

eapFail = FALSE

eapTimeout = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE


DISCARD


eapResp = FALSE

eapNoReq = TRUE


SUCCESS


eapReqData = buildSuccess(currentId)

if (eapKeyData != NONE)

   eapKeyAvailable = TRUE

eapSuccess = TRUE


FAILURE


eapReqData = buildFailure(currentId)

eapFail = TRUE


NAK


m.reset()

Policy.update(<...>)


UCT


decision == FAILURE
 decision == SUCCESS


methodState == END


SELECT_ACTION


decision = Policy.getDecision()


rxResp &&

(respId == currentId) &&


(respMethod == currentMethod)


rxResp &&

(respId == currentId) &&


(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&


(
methodState == PROPOSED)


RETRANSMIT


retransCount++

if (retransCount <= MaxRetrans)  {

   eapReqData = lastReqData

   eapReq = TRUE

}


else

eapResp


else


retransWhile==0


!portEnabled


retransCount > MaxRetrans


portEnabled

UCT


TIMEOUT_FAILURE


eapTimeout = TRUE


INTEGRITY_CHECK


ignore =

   m.check(eapRespData)


METHOD_RESPONSE


m.process(eapRespData)

if (m.isDone()) {

   Policy.update(<...>)

   eapKeyData = m.getKey()

   methodState = END

} else

   methodState = CONTINUE


METHOD_REQUEST


currentId = nextId(currentId)

eapReqData = m.buildReq(currentId)

methodTimeout = m.getTimeout()


PROPOSE_METHOD


currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

    currentMethod==NOTIFICATION)

  methodState = CONTINUE

else

  methodState = PROPOSED


else

!ignore


else


UCT


retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)


/* SUCCESS, FAILURE, or CONTINUE */


RECEIVED


(rxResp,respId,respMethod)=

   parseEapResp(eapRespData)


eapRestart && portEnabled


Figure 4: EAP Standalone Authenticator State Machine

5 Standalone Authenticator State Machine

The following is a diagram of the ”Standalone” EAP authenticator state machine. This diagram should be
used for those interested in a self-contained, or non-pass-through, authenticator. Included is an explanation
of the primitives and procedures referenced in the diagram, as well as a clarification of notation.

(see draft-ietf-eap-statemachine-03.pdf for missing diagram or refer to Appendix A.2 if reading [.txt] version)
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5.1 Interface between standalone authenticator state machine and lower layer

The lower layer presents messages to the EAP authenticator state machine by storing the packet in eapResp-
Data and setting the eapResp signal to TRUE.

When the EAP authenticator state machine has finished processing the message, it sets one of the signals
eapReq, eapNoReq, eapSuccess, and eapFail. If it sets eapReq, eapSuccess, or eapFail, the corresponding
request (or success/failure) packet is stored in eapReqData. The lower layer is responsible for actually trans-
mitting this message.

5.1.1 Variables (lower layer to standalone authenticator)

• eapResp (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates an EAP response is
available for processing.

• eapRespData (EAP packet)

Set in lower layer when eapResp is set to TRUE. The EAP packet to be processed.

• portEnabled (boolean)

Indicates that the EAP authenticator state machine should be ready for communication. This is set
to TRUE when the EAP conversation is started by the lower layer. If at any point the communica-
tion port or session is not available, portEnabled is set to FALSE and the state machine transitions to
DISABLED.

• retransWhile (integer)

Outside timer used to indicate how long the authenticator has waited for a new (valid) response.

• eapRestart (boolean)

Indicates the lower layer would like to restart authentication

• eapSRTT (integer)

Smoothed round-trip time. (see [I-D.ietf-eap-rfc2284bis], Section 4.3)

• eapRTTVAR (integer)

Round-trip time variation. (see [I-D.ietf-eap-rfc2284bis], Section 4.3)

5.1.2 Variables (standalone authenticator to lower layer)

• eapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates a new EAP request is
ready to be sent.

• eapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the most recent response
has been processed, but there is no new request to send.
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• eapSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the state machine has
reached the SUCCESS state.

• eapFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the state machine has
reached the FAILURE state.

• eapReqData (EAP packet)

Set in authenticator state machine when eapReq, eapSuccess, or eapFail is set to TRUE. The actual
EAP request to be sent (or success/failure).

• eapKeyData (EAP Key)

Set in authenticator state machine when keying material becomes available. Set during the METHOD
state. Note that this document does not yet define the structure of the type ”EAP Key”. We expect it to
be defined in [I-D.ietf-eap-keying].

• eapKeyAvailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. The actual key is stored in eapKey-
Data.

5.1.3 Constants

• MaxRetrans (integer)

Configurable maximum for how many retransmissions should be attempted before aborting.

5.2 Interface between standalone authenticator state machine and methods

IN: eapRespData, methodState

OUT: ignore, eapReqData

IN/OUT: currentId, (method-specific state), (policy)

The following describes the interaction between the state machine and EAP methods.

m.init (in: -, out: -)

When the method is first started, it must initialize its own method-specific state, possibly using some infor-
mation from Policy (e.g. identity).

m.buildReq (in: integer, out: EAP packet)

Next, the method creates a new EAP Request packet, with the given identifier value, and updates its method-
specific state accordingly.

m.getTimeout (in: -, out: integer or NONE)
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The method can also provide a hint for retransmission timeout with m.getTimeout.

m.check (in: EAP packet, out: boolean)

When a new EAP Response is received, the method must first decide whether to process the packet or silently
discard it. If the packet looks like it was not sent by the legitimate peer (e.g. it has invalid MIC, and this case
should never occur), the method can indicate this by returning FALSE. In this case, the method should not
modify its own method-specific state.

m.process (in: EAP packet, out: -)

m.isDone (in: -, out: boolean)

m.getKey (in: -, out: EAP key or NONE)

Next, the method processes the EAP Response and updates its own method-specific state. Now the options
are to continue the conversation (send another request) or end this method.

If the method wants to end the conversation, it

• Tells Policy about the outcome of the method, and possibly other information.

• If the method has derived keying material it wants to export, returns it from m.getKey().

• Indicates that the method wants to end by returning TRUE from m.isDone().

Otherwise, the method continues by sending another request, as described earlier.

5.3 Standalone authenticator state machine local variables

5.3.1 Long-term (maintained between packets)

• currentMethod (EAP Type)

EAP type, IDENTITY, or NOTIFICATION.

• currentId (integer)

0-255 or NONE. Usually updated in PROPOSE METHOD state. Indicates the identifier value of the
currently outstanding EAP request.

• methodState (enumeration)

As described above.

• retransCount (integer)

Reset in SEND REQUEST state and updated in RETRANSMIT state. Current number of retransmis-
sions.

• lastReqData (EAP packet)

Set in SEND REQUEST state. EAP packet containing the last sent request.
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• methodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE.

5.3.2 Short-term (not maintained between packets)

• rxResp (boolean)

Set in RECEIVED state. Indicates the current received packet is an EAP response.

• respId (integer)

Set in RECEIVED state. The identifier from the current EAP response.

• respMethod (EAP Type)

Set in RECEIVED state. The method type of the current EAP response.

• ignore (boolean)

Set in METHOD state. Indicates whether the method has decided to accept the current packet.

• decision (enumeration)

Set in SELECT ACTION state. Temporarily store the policy decision to succeed, fail, or continue.

5.4 EAP standalone authenticator procedures

• calculateTimeout()

Calculates the retransmission timeout, taking into account the retransmission count, round-trip time
measurements, and method-specific timeout hint (see [I-D.ietf-eap-rfc2284bis], Section 4.3).

• parseEapResp()

Determine the code, identifier value, and type of the current response. Also checks that the length field
is not longer than the Received EAP packet

• buildSuccess()

Create an EAP Success Packet.

• buildFailure()

Create an EAP Failure Packet.

• nextId()

Determine the next identifier value to use, based on the previous one.

• Policy.update()

Update all variables related to internal policy state.

• Policy.getNextMethod()

Determine the method that should be used at this point in the conversation based on pre-defined policy.

• Policy.getDecision()

Determine if the policy will allow SUCCESS, FAIL, or is yet to determine (CONTINUE).
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• m.check()

Method-specific procedure to test for the validity of a message.

• m.process()

Method procedure to parse and process a response for that method.

• m.init()

Method procedure to initialize state just before use.

• m.reset()

Method procedure to indicate the method is ending in the middle or before completion.

• m.isDone()

Method procedure to check for method completion.

• m.getTimeout()

Method procedure to determine an appropriate timeout hint for that method.

• m.getKey()

Method procedure to obtain key material for use by EAP or lower layers.

• m.buildReq()

Method procedure to produce the next request.

5.5 EAP standalone authenticator states

• DISABLED

The authenticator is disabled until the port is enabled by the lower layer.

• INITIALIZE

Initializes variables when the state machine is activated.

• IDLE

The state machine spends most of its time here, waiting for something to happen.

• RECEIVED

This state is entered when an EAP packet is received: the packet header is parsed here.

• INTEGRITY CHECK

A method state in which the integrity of the incoming packet from the peer is verified by the method.

• METHOD RESPONSE

A method state in which the incoming packet is processed.

• METHOD REQUEST

A method state in which a new request is formulated if necessary.

• PROPOSE METHOD

A state in which the authenticator decides which method to try next in the authentication.
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• SELECT ACTION

In between methods, the state machine re-evaluates whether or not its policy is satisfied and succeeds,
fails, or remains undecided.

• SEND REQUEST

This state signals the lower layer that a request packet is ready to be sent.

• DISCARD

This state signals the lower layer that the response was discarded, and no new request packet will be
sent at this time.

• NAK

This state processes Nak responses from the peer.

• RETRANSMIT

Retransmits the previous request packet.

• SUCCESS

A final state indicating success.

• FAILURE

A final state indicating failure.

• TIMEOUT FAILURE

A final state indicating failure with no EAP Failure packet sent.

6 EAP Backend Authenticator

When operating in pass-through mode, there are conceptually two parts to the authenticator- the part that
passes packets through and the backend that actually implements the EAP method. The following diagram
shows a state machine for the backend part of this model when using a AAA server. Note that this diagram
is identical to Figure 4 except no retransmit is included in the IDLE state because with RADIUS retransmit
is handled by the NAS, and a PICK UP METHOD state and variable in INITIALIZE state are added to
allow the Method to ”pickup” a method started in a NAS. Included is an explanation of the primitives and
procedures referenced in the diagram, many of which are the same as above. It should be noted that the
”lower layer” in this case is some AAA protocol (e.g. RADIUS).

(see draft-ietf-eap-statemachine-03.pdf for missing diagram or refer to Appendix A.3 if reading [.txt] version)

6.1 Interface between backend authenticator state machine and lower layer

The lower layer presents messages to the EAP backend authenticator state machine by storing the packet in
aaaEapRespData and setting the aaaEapResp signal to TRUE.

When the EAP backend authenticator state machine has finished processing the message, it sets one of the
signals aaaEapReq, aaaEapNoReq, aaaSuccess, and aaaFail. If it sets eapReq, eapSuccess, or eapFail, the
corresponding request (or success/failure) packet is stored in aaaEapReqData. The lower layer is responsible
for actually transmitting this message.
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UCT


UCT

ignore


IDLE


SEND_REQUEST


aaaEapResp = FALSE

aaaEapReq = TRUE


UCT


DISCARD


aaaEapResp = FALSE

aaaEapNoReq = TRUE


SUCCESS


aaaEapReqData = buildSuccess(currentId)

if (aaaEapKeyData != NONE)

   aaaEapKeyAvailable = TRUE

aaaEapSuccess = TRUE


FAILURE


aaaEapReqData = buildFailure(currentId)

aaaEapFail = TRUE


NAK


m.reset()

Policy.update(<...>)


UCT


decision == FAILURE
 decision == SUCCESS


methodState == END


SELECT_ACTION


decision = Policy.getDecision()


rxResp &&

(respId == currentId) &&


(respMethod == currentMethod)


rxResp &&

(respId == currentId) &&


(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&


(
methodState == PROPOSED)


aaaEapResp


else


INTEGRITY_CHECK


ignore =

   m.check(aaaEapRespData)


METHOD_RESPONSE


m.process(aaaEapRespData)

if (m.isDone()) {

   Policy.update(<...>)

   aaaEapKeyData = m.getKey()

   methodState = END

} else

   methodState = CONTINUE


METHOD_REQUEST


currentId = nextId(currentId)

aaaEapReqData = m.buildReq(currentId)

aaaMethodTimeout = m.getTimeout()


PROPOSE_METHOD


currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

    currentMethod==NOTIFICATION)

  methodState = CONTINUE

else

  methodState = PROPOSED


else

!ignore


else


UCT


INITIALIZE


currentMethod = NONE

(rxResp,respId,respMethod) =

   parseEapResp(aaaEapRespData)

if (rxResp)

   currentId = respId

else

   currentId = NONE


PICK_UP_METHOD


if (Policy.doPickUp(respMethod)) {

   currentMethod = respMethod

   m.initPickUp()

}


!rxResp


currentMethod==NONE


DISABLED


!backendEnabled


else


rxResp &&

(respMethod==NAK ||


respMethod==EXPANDED_NAK)

else


backendEnabled &&

aaaEapResp


/* SUCCESS, FAILURE, or CONTINUE */


RECEIVED


(rxResp,respId,respMethod)=

   parseEapResp(aaaEapRespData)


Figure 5: EAP Backend Authenticator State Machine

6.1.1 Variables (AAA interface to backend authenticator)

• aaaEapResp (boolean)
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Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates an EAP response is
available for processing.

• aaaEapRespData (EAP packet)

Set in lower layer when eapResp is set to TRUE. The EAP packet to be processed.

• backendEnabled (boolean)

Indicates that there is a valid link to use for the communication. If at any point the port is not available,
backendEnabled is set to FALSE and the state machine transitions to DISABLED.

6.1.2 Variables (backend authenticator to AAA interface)

• aaaEapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates a new EAP request is
ready to be sent.

• aaaEapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the most recent response
has been processed, but there is no new request to send.

• aaaSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the state machine has
reached the SUCCESS state.

• aaaFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the state machine has
reached the FAILURE state.

• aaaEapReqData (EAP packet)

Set in authenticator state machine when aaaEapReq, aaaSuccess, or aaaFail is set to TRUE. The actual
EAP request to be sent (or success/failure).

• aaaEapKeyData (EAP Key)

Set in authenticator state machine when keying material becomes available. Set during the METHOD RESPONSE
state. Note that this document does not yet define the structure of the type ”EAP Key”. We expect it to
be defined in [I-D.ietf-eap-keying].

• aaaEapKeyAvailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. The actual key is stored in aaaEap-
KeyData.

• aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE (note that this hint is for the EAP
retransmissions done by the pass-through authenticator, not retransmissions of AAA packets).
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6.2 Interface between backend authenticator state machine and methods

The backend method interface is almost the same as in standalone authenticator described in Section 5.2. The
only difference is that some methods on the backend may support ”picking up” a conversation started by the
pass-through. That is, the EAP Request packet was sent by the pass-through, but the backend must process
the corresponding EAP Response. Usually only the Identity method supports this, but others are possible.

When ”picking up” a conversation, m.initPickUp() is called instead of m.init(). Next, m.process() must
examine eapRespData and update its own method-specific state to match what it would have been if it had
actually sent the corresponding request. (Obviously, this only works for methods that can determine what the
initial request contained; Identity and EAP-TLS are good examples.)

After this, the processing continues as described in Section 5.2

6.3 Backend authenticator state machine local variables

For definitions of the variables used in the Backend Authenticator, see Section 5.3.

6.4 EAP backend authenticator procedures

Most of the procedures of the backend authenticator have already been defined in Section 5.4. This sec-
tion contains definitions for those not existent in the standalone version, as well as those which are defined
differently.

• Policy.doPickUp()

Notify the policy that an already-chosen method is being picked up and will be completed.

• m.initPickUp()

Method procedure to initialize state when continuing from an already-started method.

6.5 EAP backend authenticator states

Most of the states of the backend authenticator have already been defined in Section 5.5. This section contains
definitions for those not existent in the standalone version, as well as those which are defined differently.

• PICK UP METHOD

Set an initial state for a method that is being continued and was started elsewhere.
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7 EAP Full Authenticator

The following two diagrams show the state machine for a complete authenticator. The first diagram is identi-
cal to the Standalone State Machine, shown in Figure 4, with the exception that the SELECT ACTION state
has an added transition to PASSTHROUGH. The second diagram also keeps most of the logic except the four
method states, and shows how the state machine works once it goes to Pass-Through Mode.

The first diagram is largely a reproduction of that found above, with the added hooks for a transition to
PASSTHROUGH mode.

UCT


UCT
ignore


IDLE


SEND_REQUEST


retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE


UCT


DISABLED


INITIALIZE


currentId = NONE

eapSuccess = FALSE

eapFail = FALSE

eapTimeout = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE


DISCARD


eapResp = FALSE

eapNoReq = TRUE


SUCCESS


eapReqData = buildSuccess(currentId)

if (eapKeyData != NONE)

   eapKeyAvailable = TRUE

eapSuccess = TRUE


FAILURE


eapReqData = buildFailure(currentId)

eapFail = TRUE


NAK


m.reset()

Policy.update(<...>)


UCT


decision == FAILURE
 decision == SUCCESS


methodState == END


SELECT_ACTION


decision = Policy.getDecision()


rxResp &&

(respId == currentId) &&


(respMethod == currentMethod)


rxResp &&

(respId == currentId) &&


(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&


(
methodState == PROPOSED)


RETRANSMIT


retransCount++

if (retransCount <= MaxRetrans)  {

   eapReqData = lastReqData

   eapReq = TRUE

}


else

eapResp


else


retransWhile==0


!portEnabled


retransCount > MaxRetrans


portEnabled

UCT


TIMEOUT_FAILURE


eapTimeout = TRUE


INTEGRITY_CHECK


ignore =

   m.check(eapRespData)


METHOD_RESPONSE


m.process(eapRespData)

if (m.isDone()) {

   Policy.update(<...>)

   eapKeyData = m.getKey()

   methodState = END

} else

   methodState = CONTINUE


METHOD_REQUEST


currentId = nextId(currentId)

eapReqData = m.buildReq(currentId)

methodTimeout = m.getTimeout()


PROPOSE_METHOD


currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

    currentMethod==NOTIFICATION)

  methodState = CONTINUE

else

  methodState = PROPOSED


else

!ignore


else


UCT


retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)


decision==PASSTHROUGH

/* SUCCESS, FAILURE, CONTINUE, or PASSTHROUGH */


RECEIVED


(rxResp,respId,respMethod)=

   parseEapResp(eapRespData)


eapRestart && portEnabled


Figure 6: EAP Full Authenticator State Machine (Part 1)

(see draft-ietf-eap-statemachine-03.pdf for missing diagram or refer to Appendix A.4 if reading [.txt] version)

The second diagram describes the functionality necessary for an authenticator operating in pass-through
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mode. This section of the diagram is the counterpart of the backend diagram above.

UCT


UCT


IDLE2


SEND_REQUEST2


retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE


UCT


DISCARD2


eapResp = FALSE

eapNoReq = TRUE


RETRANSMIT2


retransCount++

if (retransCount <= MaxRetrans)  {

   eapReqData = lastReqData

   eapReq = TRUE

}


else

eapResp


else


retransWhile==0


retransCount > MaxRetrans


retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)


AAA_IDLE


aaaFail = FALSE

aaaSuccess = FALSE

aaaEapReq = FALSE

aaaEapNoReq = FALSE

aaaEapResp = TRUE


aaaEapReq


aaaTimeout


UCT


AAA_RESPONSE


eapReqData = aaaEapReqData

currentId = getId(eapReqData)

methodTimeout = aaaMethodTimeout


SUCCESS2


eapReqData = aaaEapReqData

eapKeyData = aaaEapKeyData

eapKeyAvalable = aaaEapKeyAvailable

eapSuccess = TRUE


FAILURE2


eapReqData = aaaEapReqData

eapFail = TRUE
TIMEOUT_FAILURE2


eapTimeout = TRUE


rxResp &&

(respId == currentId)


aaaEapNoReq


aaaFail
 aaaSuccess


AAA_REQUEST


if (respMethod==IDENTITY)

   aaaIdentity = eapRespData

aaaEapRespData = eapRespData


currentId != NONE


decision==PASSTHROUGH


currentId == NONE


RECEIVED2
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Figure 7: EAP Full Authenticator State Machine (Part 2)

(see draft-ietf-eap-statemachine-03.pdf for missing diagram or refer to Appendix A.4 if reading [.txt] version)

7.1 Interface between full authenticator state machine and lower layers

The full authenticator is unique in that it interfaces to multiple lower layers in order to support pass-through
mode. The interface to the primary EAP transport layer is the same as described in Section 5. The following
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describes the interface to the second lower layer, which represents an interface to AAA. It should be noted
that there is not necessarily a direct interaction between the EAP layer and the AAA layer, as in the case of
[IEEE-802-1X-REV].

7.1.1 Variables (AAA interface to full authenticator)

• aaaEapReq (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates a new EAP request is
available from the AAA server.

• aaaEapNoReq (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates the most recent response
has been processed, but there is no new request to send.

• aaaSuccess (boolean)

Set to TRUE in lower layer. Indicates the AAA backend authenticator has reached the SUCCESS state.

• aaaFail (boolean)

Set to TRUE in lower layer. Indicates the AAA backend authenticator has reached the FAILURE state.

• aaaEapReqData (EAP packet)

Set in the lower layer when aaaEapReq, aaaSuccess, or aaaFail is set to TRUE. The actual EAP request
to be sent (or success/failure).

• aaaEapKeyData (EAP Key)

Set in lower layer when keying material becomes available from the AAA server. Note that this docu-
ment does not yet define the structure of the type ”EAP Key”. We expect it to be defined in [I-D.ietf-
eap-keying].

• aaaEapKeyAvailable (boolean)

Set to TRUE in the lower layer if keying material is available. The actual key is stored in aaaEapKey-
Data.

• aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE (note that this hint is for the EAP
retransmissions done by the pass-through authenticator, not retransmissions of AAA packets).

7.1.2 Variables (full authenticator to AAA interface)

• aaaEapResp (boolean)

Set to TRUE in authenticator state machine, FALSE in the lower layer. Indicates an EAP response is
available for processing by the AAA server.

• aaaEapRespData (EAP packet)

Set in authenticator state machine when eapResp is set to TRUE. The EAP packet to be processed.

• aaaIdentity (EAP packet)

Set in authenticator state machine when an IDENTITY response is received. Makes that identity avail-
able to AAA lower layer.
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• aaaTimeout (boolean)

Set in AAA IDLE if after a configurable amount of time there is no response from the AAA layer.
The AAA layer in the NAS is itself alive and OK, but for some reason it has not received a valid
Access-Accept/Reject indication from the backend

7.1.3 Constants

Same as Section 5.

7.2 Interface between full authenticator state machine and methods

Same as standalone authenticator ( Section 5.2)

7.3 Full authenticator state machine local variables

Many of the variables of the full authenticator have already been defined in Section 5. This section contains
definitions for those not existent in the standalone version, as well as those which are defined differently.

7.3.1 Short-term (not maintained between packets)

• decision (enumeration)

Set in SELECT ACTION state. Temporarily store the policy decision to succeed, fail, continue with a
local method, or continue in pass-through mode.

7.4 EAP full authenticator procedures

All of the procedures defined in Section 5 exist in the full version. In addition, the following procedures are
defined.

• getId()

Determine the identifier value chosen by the AAA server for the current EAP request.

7.5 EAP full authenticator states

All of the states defined in Section 5 exist in the full version. In addition, the following states are defined.

• INITIALIZE PASSTHROUGH

Initializes variables when the pass-through portion of the state machine is activated.
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• IDLE2

The state machine waits for a response from the primary lower layer, which transports EAP traffic from
the peer.

• IDLE

The state machine spends most of its time here, waiting for something to happen.

• RECEIVED2

This state is entered when an EAP packet is received and the authenticator is in PASSTHROUGH
mode: the packet header is parsed here.

• AAA REQUEST

The incoming EAP packet is parsed for sending to the AAA server.

• AAA IDLE

Idle state which tells the AAA layer it has a response and then waits for a new request, a no-request
signal, or success/failure.

• AAA RESPONSE

State in which the request from the AAA interface is processed into an EAP request.

• SEND REQUEST2

This state signals the lower layer that a request packet is ready to be sent.

• DISCARD2

This state signals the lower layer that the response was discarded, and no new request packet will be
sent at this time.

• RETRANSMIT2

Retransmits the previous request packet.

• SUCCESS2

A final state indicating success.

• FAILURE2

A final state indicating failure.

• TIMEOUT FAILURE2

A final state indicating failure with no EAP Failure packet sent.

8 Implementation Considerations

8.1 Robustness

In order to deal with erroneous cases that are not directly related to the protocol behavior, implementations
may need additional considerations to provide robustness against errors.
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For example, an implementation of a state machine may spend a significant amount of time in a particular
state for performing the procedure defined for the state without returning a response. If such an implemen-
tation is made on a multithreading system, the procedure may be performed in a separate thread so that the
implementation can perform appropriate action to deal with the case without blocking on the state for a long
time (or forever if the procedure never completes due to, e.g., a non-responding user or a bug in an application
callback function.)

The following states are identified as the possible places of blocking:

• IDENTITY state in the peer state machine. It may take some time to process Identity request when a
user input is needed for obtaining an identity from the user. The user may never input an identity. An
implementation may define an additional state transition from IDENTITY state to FAILURE state so
that authentication can fail if no identity is obtained from the user before ClientTimeout timer expires.

• METHOD state in the peer state machine and in METHOD RESPONSE state in the authenticator state
machines. It may take some time to perform method-specific procedures in these states. An implemen-
tation may define an additional state transition from METHOD state and METHOD RESPONSE state
to FAILURE or TIMEOUT FAILURE state so that authentication can fail if no method processing
result is obtained from the method before methodTimeout timer expires.

8.2 Method/Method and Method/Lower-Layer Interfaces

Implementations may define additional interfaces to pass method-specific information between methods and
lower layers. These interfaces are beyond the scope of this document.

9 Security Considerations

This document’s intent is to describe the EAP state machine fully. To this end, any security concerns with
this document are likely a reflection of security concerns with EAP itself.
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Appendix A. ASCII versions of state diagrams

This appendix contains the state diagrams in ASCII format. Please use the PDF version whenever possible:
it is much easier to understand.

The notation is as follows: state name and pseudocode executed when entering it are shown on the left;
outgoing transitions with their conditions are shown on the right.

A.1 EAP Peer State Machine (Figure 3)

---------------------------------------------------------------------
(global transitions) | !portEnabled | DISABLED

|------------------------+--------------
| eapRestart && | INITIALIZE
| portEnabled |

-----------------------------+------------------------+--------------
DISABLED | portEnabled | INITIALIZE
-----------------------------+------------------------+--------------
INITIALIZE | |

| |
selectedMethod = NONE | |
methodState = NONE | |
allowNotifications = TRUE | |
decision = FAIL | UCT | IDLE
idleWhile = ClientTimeout | |
eapSuccess = FALSE | |
eapFail = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
-----------------------------+------------------------+--------------
IDLE | eapReq | RECEIVED

|------------------------+--------------
| (altAccept && |
| decision != FAIL) || |
| (idleWhile == 0 && | SUCCESS
| decision == |
| UNCOND_SUCC) |
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|------------------------+--------------
| altReject || |
| (idleWhile == 0 && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (altAccept && |
| methodState != CONT && |
| decision == FAIL) |

-----------------------------+------------------------+--------------
RECEIVED | rxReq && | METHOD

| (reqId != lastId) && |
(rxReq,rxSuccess,rxFailure, | (reqMethod == |

reqId,reqMethod) = | selectedMethod) && |
parseEapReq(eapReqData) | (methodState != DONE) |

|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == |
| NONE) && | GET_METHOD
| (reqMethod != |
| IDENTITY) && |
| (reqMethod != |
| NOTIFICATION) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == | IDENTITY
| NONE) && |
| (reqMethod == |
| IDENTITY) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (reqMethod == | NOTIFICATION
| NOTIFICATION) && |
| allowNotifications |
|------------------------+--------------
| rxReq && | RETRANSMIT
| (reqId == lastId) |
|------------------------+--------------
| rxSuccess && |
| (reqId == lastId) && | SUCCESS
| (decision != FAIL) |
|------------------------+--------------
| (methodState!=CONT) && |
| ((rxFailure && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (rxSuccess && |
| decision == FAIL)) && |
| (reqId == lastId) |
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|------------------------+--------------
| else | DISCARD

-----------------------------+------------------------+--------------
METHOD | |

| |
ignore = m.check(eapReqData) | ignore | DISCARD
if (!ignore) { | |

(methodState, decision, | |
allowNotifications) = |------------------------+--------------
m.process(eapReqData) | |
/* methodState is CONT, | |

MAY_CONT, or DONE */ | (methodState==DONE) && | FAILURE
/* decision is FAIL, | (decision == FAIL) |

COND_SUCC, or | |
UNCOND_SUCC */ | |

eapRespData = |------------------------+--------------
m.buildResp(reqId) | |

if (m.isKeyAvailable()) | else | SEND_RESPONSE
eapKeyData = m.getKey() | |

} | |
-----------------------------+------------------------+--------------
GET_METHOD | |

| selectedMethod == |
if (allowMethod(reqMethod)) {| reqMethod | METHOD

selectedMethod = reqMethod | |
methodState = INIT | |

} else { |------------------------+--------------
eapRespData = | |

buildNak(reqId) | else | SEND_RESPONSE
} | |
-----------------------------+------------------------+--------------
IDENTITY | |

| |
processIdentity(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |

buildIdentity(reqId) | |
-----------------------------+------------------------+--------------
NOTIFICATION | |

| |
processNotify(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |

buildNotify(reqId) | |
-----------------------------+------------------------+--------------
RETRANSMIT | |

| UCT | SEND_RESPONSE
eapRespData = lastRespData | |
-----------------------------+------------------------+--------------
DISCARD | |

| UCT | IDLE
eapReq = FALSE | |
eapNoResp = TRUE | |
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-----------------------------+------------------------+--------------
SEND_RESPONSE | |

| |
lastId = reqId | |
lastRespData = eapRespData | UCT | IDLE
eapReq = FALSE | |
eapResp = TRUE | |
idleWhile = ClientTimeout | |
-----------------------------+------------------------+--------------
SUCCESS | |

| |
if (eapKeyData != NONE) | |

eapKeyAvailable = TRUE | |
eapSuccess = TRUE | |
-----------------------------+------------------------+--------------
FAILURE | |

| |
eapFail = TRUE | |
---------------------------------------------------------------------

A.2 EAP Standalone Authenticator State Machine (Figure 4)

---------------------------------------------------------------------
(global transitions) | !portEnabled | DISABLED

|---------------------+----------------
| eapRestart && | INITIALIZE
| portEnabled |

------------------------------+---------------------+----------------
DISABLED | portEnabled | INITIALIZE
------------------------------+---------------------+----------------
INITIALIZE | |

| |
currentId = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | UCT | SELECT_ACTION
eapTimeout = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
------------------------------+---------------------+----------------
IDLE | |

| retransWhile == 0 | RETRANSMIT
retransWhile = | |

calculateTimeout( |---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED
eapRTTVAR, methodTimeout) | |

------------------------------+---------------------+----------------
RETRANSMIT | |

| retransCount > | TIMEOUT_FAILURE
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retransCount++ | MaxRetrans |
if (retransCount<=MaxRetrans){| |

eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE

} | |
------------------------------+---------------------+----------------
RECEIVED | rxResp && |

| (respId == |
(rxResp,respId,respMethod)= | currentId) && |

parseEapResp(eapRespData) | (respMethod == NAK |
| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD

------------------------------+---------------------+----------------
NAK | |

| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------

Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, or |---------------------+----------------

CONTINUE */ | else | PROPOSE_METHOD
------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD

|---------------------+----------------
ignore = m.check(eapRespData) | !ignore | METHOD_RESPONSE
------------------------------+---------------------+----------------
METHOD_RESPONSE | |

| methodState == END | SELECT_ACTION
m.process(eapRespData) | |
if (m.isDone()) { | |

Policy.update(<...>) |---------------------+----------------
eapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST

} else | |
methodState = CONTINUE | |

------------------------------+---------------------+----------------
PROPOSE_METHOD | |

Vollbrecht, et al. Expires September 27, 2004 [Page 36]



INTERNET-DRAFT EAP State Machine March 2004

| |
currentMethod = | |

Policy.getNextMethod() | |
m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |

currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |

else | |
methodState = PROPOSED | |

------------------------------+---------------------+----------------
METHOD_REQUEST | |

| |
currentId = nextId(currentId) | UCT | SEND_REQUEST
eapReqData = | |

m.buildReq(currentId) | |
methodTimeout = m.getTimeout()| |
------------------------------+---------------------+----------------
DISCARD | |

| UCT | IDLE
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST | |

| |
retransCount = 0 | UCT | IDLE
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE | |

| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE | |

| |
eapReqData = | |

buildFailure(currentId) | |
eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |

| |
eapReqData = | |

buildSuccess(currentId) | |
if (eapKeyData != NONE) | |

eapKeyAvailable = TRUE | |
eapSuccess = TRUE | |
---------------------------------------------------------------------
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A.3 EAP Backend Authenticator State Machine (Figure 5)

---------------------------------------------------------------------
(global transitions) | !backendEnabled | DISABLED
------------------------------+---------------------+----------------
DISABLED | backendEnabled && | INITIALIZE

| aaaEapResp |
------------------------------+---------------------+----------------
INITIALIZE | !rxResp | SELECT_ACTION

|---------------------+----------------
currentMethod = NONE | rxResp && |
(rxResp,respId,respMethod)= | (respMethod == NAK |

parseEapResp(aaaEapRespData)| || | NAK
if (rxResp) | respMethod == |

currentId = respId | EXPANDED_NAK) |
else |---------------------+----------------

currentId = NONE | else | PICK_UP_METHOD
------------------------------+---------------------+----------------
PICK_UP_METHOD | |

| currentMethod == | SELECT_ACTION
if (Policy.doPickUp( | NONE |

respMethod)) { | |
currentMethod = respMethod |---------------------+----------------
m.initPickUp() | else | METHOD_RESPONSE

} | |
------------------------------+---------------------+----------------
IDLE | aaaEapResp | RECEIVED
------------------------------+---------------------+----------------
RECEIVED | rxResp && |

| (respId == |
(rxResp,respId,respMethod)= | currentId) && |

parseEapResp(aaaEapRespData)| (respMethod == NAK |
| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD

------------------------------+---------------------+----------------
NAK | |

| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
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------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------

Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, or |---------------------+----------------

CONTINUE */ | else | PROPOSE_METHOD
------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD

| |
ignore = |---------------------+----------------

m.check(aaaEapRespData) | !ignore | METHOD_RESPONSE
------------------------------+---------------------+----------------
METHOD_RESPONSE | |

| methodState == END | SELECT_ACTION
m.process(aaaEapRespData) | |
if (m.isDone()) { | |

Policy.update(<...>) |---------------------+----------------
aaaEapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST

} else | |
methodState = CONTINUE | |

------------------------------+---------------------+----------------
PROPOSE_METHOD | |

| |
currentMethod = | |

Policy.getNextMethod() | |
m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |

currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |

else | |
methodState = PROPOSED | |

------------------------------+---------------------+----------------
METHOD_REQUEST | |

| |
currentId = nextId(currentId) | |
aaaEapReqData = | UCT | SEND_REQUEST

m.buildReq(currentId) | |
aaaMethodTimeout = | |

m.getTimeout() | |
------------------------------+---------------------+----------------
DISCARD | |

| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST | |

| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapReq = TRUE | |
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------------------------------+---------------------+----------------
FAILURE | |

| |
aaaEapReqData = | |

buildFailure(currentId) | |
aaaEapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |

| |
aaaEapReqData = | |

buildSuccess(currentId) | |
if (aaaEapKeyData != NONE) | |

aaaEapKeyAvailable = TRUE | |
aaaEapSuccess = TRUE | |
---------------------------------------------------------------------

A.4 EAP Full Authenticator State Machine (Figures 6 and 7)

This state machine contains all the states from EAP Standalone Authenticator State Machine, except that
SELECT ACTION state is replaced with the following:

---------------------------------------------------------------------
SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------

Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, CONTINUE,|---------------------+----------------

or PASSTHROUGH */ | decision == | INITIALIZE_
| PASSTHROUGH | PASSTHROUGH
|---------------------+----------------
| else | PROPOSE_METHOD

---------------------------------------------------------------------

And the following new states are added:

---------------------------------------------------------------------
INITIALIZE_PASSTHROUGH | currentId != NONE | AAA_REQUEST

|---------------------+----------------
aaaEapRespData = NONE | currentId == NONE | AAA_IDLE
------------------------------+---------------------+----------------
IDLE2 | |

| retransWhile == 0 | RETRANSMIT2
retransWhile = | |

calculateTimeout( |---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED2
eapRTTVAR, methodTimeout) | |

------------------------------+---------------------+----------------
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RETRANSMIT2 | |
| retransCount > | TIMEOUT_

retransCount++ | MaxRetrans | FAILURE2
if (retransCount<=MaxRetrans){| |

eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE2

} | |
------------------------------+---------------------+----------------
RECEIVED2 | rxResp && |

| (respId == | AAA_REQUEST
(rxResp,respId,respMethod)= | currentId) |

parseEapResp(eapRespData) |---------------------+----------------
| else | DISCARD2

------------------------------+---------------------+----------------
AAA_REQUEST | |

| |
if (respMethod == IDENTITY) { | UCT | AAA_IDLE

aaaIdentity = eapRespData | |
aaaEapRespData = eapRespData | |
------------------------------+---------------------+----------------
AAA_IDLE | aaaEapNoReq | DISCARD2

|---------------------+----------------
aaaFail = FALSE | aaaEapReq | AAA_RESPONSE
aaaSuccess = FALSE |---------------------+----------------
aaaEapReq = FALSE | aaaTimeout | TIMEOUT_
aaaEapNoReq = FALSE | | FAILURE2
aaaEapResp = TRUE |---------------------+----------------

| aaaFail | FAILURE2
|---------------------+----------------
| aaaSuccess | SUCCESS2

------------------------------+---------------------+----------------
AAA_RESPONSE | |

| |
eapReqData = aaaEapReqData | UCT | SEND_REQUEST2
currentId = getId(eapReqData) | |
methodTimeout = | |

aaaMethodTimeout | |
------------------------------+---------------------+----------------
DISCARD2 | |

| UCT | IDLE2
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST2 | |

| |
retransCount = 0 | UCT | IDLE2
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE2 | |
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| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE2 | |

| |
eapReqData = aaaEapReqData | |
eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS2 | |

| |
eapReqData = aaaEapReqData | |
eapKeyData = aaaEapKeyData | |
eapKeyAvailable = | |

aaaEapKeyAvailable | |
eapSuccess = TRUE | |
---------------------------------------------------------------------
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tributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its
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successors or assignees.

This document and the information contained herein is provided on an ”AS IS” basis and THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
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