
Free Lossless Audio Codec

Abstract

This document defines the Free Lossless Audio Codec (FLAC) format and its streamable

subset. FLAC is designed to reduce the amount of computer storage space needed to store

digital audio signals without losing information in doing so (i.e. lossless). FLAC is free in the

sense that its specification is open and its reference implementation is open-source.

Compared to other lossless (audio) coding formats, FLAC is a format with low complexity

and can be coded to and from with little computing resources. Decoding of FLAC has seen

many independent implementations on many different platforms, and both encoding and

decoding can be implemented without needing floating-point arithmetic.

Workgroup:

Internet-Draft:

Published:

Intended

Status:

Expires:

Authors:

cellar

draft-ietf-cellar-flac-08

3 April 2023

Standards Track

5 October 2023

 M.Q.C. van Beurden A. Weaver

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP

79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note

that other groups may also distribute working documents as Internet-Drafts. The list of

current Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use

Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 October 2023.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted from this document

must include Revised BSD License text as described in Section 4.e of the Trust Legal

Provisions and are provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

van Beurden & Weaver Expires 5 October 2023 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Notation and Conventions

3. Definitions

4. Conceptual overview

4.1. Blocking

4.2. Interchannel Decorrelation

4.3. Prediction

4.4. Residual Coding

5. Format principles

6. Format lay-out

7. Streamable subset

8. File-level metadata

8.1. Metadata block header

8.2. Streaminfo

8.3. Padding

8.4. Application

8.5. Seektable

8.5.1. Seekpoint

8.6. Vorbis comment

8.6.1. Standard field names

8.6.2. Channel mask

8.7. Cuesheet

8.7.1. Cuesheet track

8.8. Picture

9. Frame structure

9.1. Frame header

9.1.1. Block size bits

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 2

9.1.2. Sample rate bits

9.1.3. Channels bits

9.1.4. Bit depth bits

9.1.5. Coded number

9.1.6. Uncommon block size

9.1.7. Uncommon sample rate

9.1.8. Frame header CRC

9.2. Subframes

9.2.1. Subframe header

9.2.2. Wasted bits per sample

9.2.3. Constant subframe

9.2.4. Verbatim subframe

9.2.5. Fixed predictor subframe

9.2.6. Linear predictor subframe

9.2.7. Coded residual

9.3. Frame footer

10. Container mappings

10.1. Ogg mapping

10.2. Matroska mapping

10.3. ISO Base Media File Format (MP4) mapping

11. Implementation status

12. Security Considerations

13. IANA Considerations

13.1. Media type registration

14. Acknowledgments

15. Normative References

16. Informative References

Appendix A. Numerical considerations

A.1. Determining necessary data type size

A.2. Stereo decorrelation

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 3

A.3. Prediction

A.4. Residual

A.5. Rice coding

Appendix B. Past format changes

B.1. Addition of block size strategy flag

B.2. Restriction of encoded residual samples

B.3. Addition of 5-bit Rice parameter

B.4. Restriction of LPC shift to non-negative values

Appendix C. Interoperability considerations

C.1. Features outside of streamable subset

C.2. Variable block size

C.3. 5-bit Rice parameter

C.4. Rice escape code

C.5. Uncommon block size

C.6. Uncommon bit depth

C.7. Multi-channel audio and uncommon sample rates

Appendix D. Examples

D.1. Decoding example 1

D.1.1. Example file 1 in hexadecimal representation

D.1.2. Example file 1 in binary representation

D.1.3. Signature and streaminfo

D.1.4. Audio frames

D.2. Decoding example 2

D.2.1. Example file 2 in hexadecimal representation

D.2.2. Example file 2 in binary representation (only audio frames)

D.2.3. Streaminfo metadata block

D.2.4. Seektable

D.2.5. Vorbis comment

D.2.6. Padding

D.2.7. First audio frame

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 4

D.2.8. Second audio frame

D.2.9. MD5 checksum verification

D.3. Decoding example 3

D.3.1. Example file 3 in hexadecimal representation

D.3.2. Example file 3 in binary representation (only audio frame)

D.3.3. Streaminfo metadata block

D.3.4. Audio frame

Authors' Addresses

1. Introduction

This document defines the FLAC format and its streamable subset. FLAC files and streams

can code for pulse-code modulated (PCM) audio with 1 to 8 channels, sample rates from 1

up to 1048575 hertz and bit depths from 4 up to 32 bits. Most tools for coding to and

decoding from the FLAC format have been optimized for CD-audio, which is PCM audio with

2 channels, a sample rate of 44.1 kHz and a bit depth of 16 bits.

FLAC is able to achieve lossless compression because samples in audio signals tend to be

highly correlated with their close neighbors. In contrast with general purpose compressors,

which often use dictionaries, do run-length coding or exploit long-term repetition, FLAC

removes redundancy solely in the very short term, looking back at most 32 samples.

The coding methods provided by the FLAC format work best on PCM audio signals of which

the samples have a signed representation and are centered around zero. Audio signals in

which samples have an unsigned representation must be transformed to a signed

representation as described in this document in order to achieve reasonable compression.

The FLAC format is not suited to compress audio that is not PCM.

2. Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in BCP 14 when, and

only when, they appear in all capitals, as shown here.

Values expressed as u(n) represent unsigned big-endian integer using n bits. Values

expressed as s(n) represent signed big-endian integer using n bits, signed two's

complement. Where necessary n is expressed as an equation using * (multiplication), /

(division), + (addition), or - (subtraction). An inclusive range of the number of bits

expressed is represented with an ellipsis, such as u(m...n). The name of a value followed

by an asterisk * indicates zero or more occurrences of the value. The name of a value

followed by a plus sign + indicates one or more occurrences of the value.

[RFC2119] [RFC8174]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 5

3. Definitions

Lossless compression: reducing the amount of computer storage space needed to

store data without needing to remove or irreversibly alter any of this data in doing so. In

other words, decompressing losslessly compressed information returns exactly the

original data.

Lossy compression: like lossless compression, but instead removing, irreversibly

altering or only approximating information for the purpose of further reducing the

amount of computer storage space needed. In other words, decompressing lossy

compressed information returns an approximation of the original data.

Block: A (short) section of linear pulse-code modulated audio, with one or more

channels.

Subblock: All samples within a corresponding block for 1 channel. One or more

subblocks form a block, and all subblocks in a certain block contain the same number of

samples.

Frame: A frame header, one or more subframes and a frame footer. It encodes the

contents of a corresponding block.

Subframe: An encoded subblock. All subframes within a frame code for the same

number of samples. A subframe corresponds to a subblock, the average of two

subblocks or the difference between two subblocks, see section on interchannel

decorrelation.

Block size: The total number of samples contained in a block or coded in a frame,

divided by the number of channels. In other words, the number of samples in any

subblock of a block, or any subframe of a frame. This is also called interchannel
samples.

Bit depth or bits per sample: the number of bits used to contain each sample. This

MUST be the same for all subblocks in a block but MAY be different for different

subframes in a frame because of interchannel decorrelation.

Predictor: a model used to predict samples in an audio signal based on past samples.

FLAC uses such predictors to remove redundancy in a signal in order to be able to

compress it.

Linear predictor: a predictor using linear prediction (see). This is

also called linear predictive coding (LPC). With a linear predictor each prediction is a

linear combination of past samples, hence the name. A linear predictor has a causal

discrete-time finite impulse response (see).

Fixed predictor: a linear predictor in which the model parameters are the same across

all FLAC files, and thus not need to be stored.

Predictor order: the number of past samples that a predictor uses. For example, a 4th

order predictor uses the 4 samples directly preceding a certain sample to predict it. In

FLAC, samples used in a predictor are always consecutive, and are always the samples

directly before the sample that is being predicted

Residual: The audio signal that remains after a predictor has been subtracted from a

subblock. If the predictor has been able to remove redundancy from the signal, the

samples of the remaining signal (the residual samples) will have, on average, a

smaller numerical value than the original signal.

•

•

•

•

•

•

•

•

•

• [LinearPrediction]

[FIR]

•

•

•

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 6

Rice code: A variable-length code (see) which compresses data by

making use of the observation that, after using an effective predictor, most residual

samples are closer to zero than the original samples, while still allowing for a small part

of the samples to be much larger.

• [VarLengthCode]

4. Conceptual overview

Similar to many other audio coders, a FLAC file is encoded following the steps below. On

decoding a FLAC file, these steps are undone in reverse order, i.e. from bottom to top.

Blocking (see section on Blocking). The input is split up into many contiguous blocks.

Interchannel Decorrelation (see section on Interchannel Decorrelation). In the case of

stereo streams, the FLAC format allows for transforming the left-right signal into a mid-

side signal to remove redundancy, if there is any. Besides coding as left-right and mid-

side, it is also possible to code left-side and side-right, whichever ordering results in the

highest compression. Choosing between any of these transformation is done

independently for each block.

Prediction (see section on Prediction). To remove redundancy in a signal, a predictor is

stored for each subblock or its transformation as formed in the previous step. A

predictor consists of a simple mathematical description that can be used, as the name

implies, to predict a certain sample from the samples that preceded it. As this

prediction is rarely exact, the error of this prediction is passed to the next stage. The

predictor of each subblock is completely independent from other subblocks. Since the

methods of prediction are known to both the encoder and decoder, only the parameters

of the predictor need be included in the compressed stream. If no usable predictor can

be found for a certain subblock, the signal is stored uncompressed and the next stage is

skipped.

Residual Coding (See section on Residual Coding). As the predictor does not describe

the signal exactly, the difference between the original signal and the predicted signal

(called the error or residual signal) is coded losslessly. If the predictor is effective, the

residual signal will require fewer bits per sample than the original signal. FLAC uses

Rice coding, a subset of Golomb coding, with either 4-bit or 5-bit parameters to code

the residual signal.

In addition, FLAC specifies a metadata system (see section on File-level metadata), which

allows arbitrary information about the stream to be included at the beginning of the stream.

•

•

•

•

4.1. Blocking

The size used for blocking the audio data has a direct effect on the compression ratio. If the

block size is too small, the resulting large number of frames mean that excess bits will be

wasted on frame headers. If the block size is too large, the characteristics of the signal may

vary so much that the encoder will be unable to find a good predictor. In order to simplify

encoder/decoder design, FLAC imposes a minimum block size of 16 samples, except for the

last block, and a maximum block size of 65535 samples. The last block is allowed to be

smaller than 16 samples to be able to match the length of the encoded audio without using

padding.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 7

While the block size does not have to be constant in a FLAC file, it is often difficult to find

the optimal arrangement of block sizes for maximum compression. Because of this the

FLAC format explicitly stores whether a file has a constant or a variable block size

throughout the stream, and stores a block number instead of a sample number to slightly

improve compression if a stream has a constant block size.

Blocked data is passed to the predictor stage one subblock at a time. Each subblock is

independently coded into a subframe, and the subframes are concatenated into a frame.

Because each channel is coded separately, subframes MAY use different predictors, even

within a frame.

4.2. Interchannel Decorrelation

In many audio files, channels are correlated. The FLAC format can exploit this correlation in

stereo files by not directly coding subblocks into subframes, but instead coding an average

of all samples in both subblocks (a mid channel) or the difference between all samples in

both subblocks (a side channel). The following combinations are possible:

Independent. All channels are coded independently. All non-stereo files MUST be

encoded this way.

Mid-side. A left and right subblock are converted to mid and side subframes. To

calculate a sample for a mid subframe, the corresponding left and right samples are

summed and the result is shifted right by 1 bit. To calculate a sample for a side

subframe, the corresponding right sample is subtracted from the corresponding left

sample. On decoding, all mid channel samples have to be shifted left by 1 bit. Also, if a

side channel sample is odd, 1 has to be added to the corresponding mid channel

sample after it has been shifted left by one bit. To reconstruct the left channel, the

corresponding samples in the mid and side subframes are added and the result shifted

right by 1 bit, while for the right channel the side channel has to be subtracted from the

mid channel and the result shifted right by 1 bit.

Left-side. The left subblock is coded and the left and right subblock are used to code a

side subframe. The side subframe is constructed in the same way as for mid-side. To

decode, the right subblock is restored by subtracting the samples in the side subframe

from the corresponding samples the left subframe.

Right-side. The right subblock is coded and the left and right subblock are used to

code a side subframe. Note that the actual coded subframe order is side-right. The side

subframe is constructed in the same way as for mid-side. To decode, the left subblock is

restored by adding the samples in the side subframe to the corresponding samples in

the right subframe.

The side channel needs one extra bit of bit depth as the subtraction can produce sample

values twice as large as the maximum possible in any given bit depth. The mid channel in

mid-side stereo does not need one extra bit, as it is shifted right one bit. The right shift of

the mid channel does not lead to non-lossless behavior, because an odd sample in the mid

subframe must always be accompanied by a corresponding odd sample in the side

subframe, which means the lost least significant bit can be restored by taking it from the

sample in the side subframe.

•

•

•

•

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 8

4.3. Prediction

The FLAC format has four methods for modeling the input signal:

Verbatim. Samples are stored directly, without any modeling. This method is used for

inputs with little correlation like white noise. Since the raw signal is not actually passed

through the residual coding stage (it is added to the stream 'verbatim'), this method is

different from using a zero-order fixed predictor.

Constant. A single sample value is stored. This method is used whenever a signal is

pure DC ("digital silence"), i.e. a constant value throughout.

Fixed predictor. Samples are predicted with one of five fixed (i.e. predefined)

predictors, the error of this prediction is processed by the residual coder. These fixed

predictors are well suited for predicting simple waveforms. Since the predictors are

fixed, no predictor coefficients are stored. From a mathematical point of view, the

predictors work by extrapolating the signal from the previous samples. The number of

previous samples used is equal to the predictor order. For more information see the

section on the fixed predictor subframe

Linear predictor. Samples are predicted using past samples and a set of predictor

coefficients, the error of this prediction is processed by the residual coder. Compared to

a fixed predictor, using a generic linear predictor adds overhead as predictor

coefficients need to be stored. Therefore, this method of prediction is best suited for

predicting more complex waveforms, where the added overhead is offset by space

savings in the residual coding stage resulting from more accurate prediction. A linear

predictor in FLAC has two parameters besides the predictor coefficients and the

predictor order: the number of bits with which each coefficient is stored (the coefficient

precision) and a prediction right shift. A prediction is formed by taking the sum of

multiplying each predictor coefficient with the corresponding past sample, and dividing

that sum by applying the specified right shift. For more information see the section on

the linear predictor subframe

A FLAC encoder is free in selecting which method is used to model the input. However, to

ensure lossless coding, the following exceptions apply:

When the samples that need to be stored do not all have the same value (i.e. the signal

is not constant), a constant subframe cannot be used.

When an encoder is unable to find a fixed or linear predictor of which all residual

samples are representable in 32-bit signed integers as stated in section coded residual,

a verbatim subframe is used.

For more information on fixed and linear predictors, see and

.

1.

2.

3.

4.

•

•

[HPL-1999-144] [robinson-

tr156]

4.4. Residual Coding

If a subframe uses a predictor to approximate the audio signal, a residual is stored to

'correct' the approximation to the exact value. When an effective predictor is used, the

average numerical value of the residual samples is smaller than that of the samples before

prediction. While having smaller values on average, it is possible a few 'outlier' residual

samples are much larger than any of the original samples. Sometimes these outliers even

exceed the range the bit depth of the original audio offers.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 9

To be able to efficiently code such a stream of relatively small numbers with an occasional

outlier, Rice coding (a subset of Golomb coding) is used. Depending on how small the

numbers are that have to be coded, a Rice parameter is chosen. The numerical value of

each residual sample is split in two parts by dividing it with 2^(Rice parameter), creating a

quotient and a remainder. The quotient is stored in unary form, the remainder in binary

form. If indeed most residual samples are close to zero and the Rice parameter is chosen

right, this form of coding, a so-called variable-length code, needs less bits to store than

storing the residual in unencoded form.

As Rice codes can only handle unsigned numbers, signed numbers are zigzag encoded to a

so-called folded residual. For more information see section coded residual for a more

thorough explanation.

Quite often the optimal Rice parameter varies over the course of a subframe. To

accommodate this, the residual can be split up into partitions, where each partition has its

own Rice parameter. To keep overhead and complexity low, the number of partitions used in

a subframe is limited to powers of two.

The FLAC format uses two forms of Rice coding, which only differ in the number of bits used

for encoding the Rice parameter, either 4 or 5 bits.

5. Format principles

FLAC has no format version information, but it does contain reserved space in several

places. Future versions of the format MAY use this reserved space safely without breaking

the format of older streams. Older decoders MAY choose to abort decoding or skip data

encoded using methods they do not recognize. Apart from reserved patterns, the format

specifies invalid patterns in certain places, meaning that the patterns MUST NOT appear in

any bitstream. These invalid patterns are usually used to make the synchronization

mechanism more robust. They are listed in the following table.

All numbers used in a FLAC bitstream are integers, there are no floating-point

representations. All numbers are big-endian coded, except the field length used in Vorbis

comments (see Vorbis comment metadata block), which are little-endian coded. All

Description Reference

Metadata block type 127 Metadata block

header

Minimum and maximum block sizes smaller than 16 in

streaminfo metadata block

Streaminfo metadata

block

Sample rate bits 0b1111 Sample rate bits

Uncommon blocksize 65536 Uncommon block size

Predictor coefficient precision bits 0b1111 Linear predictor

subframe

Negative predictor right shift Linear predictor

subframe

Table 1

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 10

numbers are unsigned except linear predictor coefficients, the linear prediction shift (see

linear predictor subframe) and numbers which directly represent samples, which are

signed. None of these restrictions apply to application metadata blocks or to Vorbis

comment field contents.

All samples encoded to and decoded from the FLAC format MUST be in a signed

representation.

There are several ways to convert unsigned sample representations to signed sample

representations, but the coding methods provided by the FLAC format work best on audio

signals of which the numerical values of the samples are centered around zero, i.e. have no

DC offset. In most unsigned audio formats, signals are centered around halfway the range

of the unsigned integer type used. If that is the case, all sample representations SHOULD

be converted by first copying the number to a signed integer with sufficient range and then

subtracting half of the range of the unsigned integer type, which should result in a signal

with samples centered around 0.

Unary coding in a FLAC bitstream is done with zero bits terminated with a one bit, e.g. the

number 5 is coded unary as 0b000001. This prevents the frame sync code from appearing

in unary coded numbers.

When a FLAC file contains invalid data, decoder behavior is left unspecified. A decoder MAY

choose to stop decoding on encountering such invalid data. Examples of such invalid data

are

One or more decoded sample values exceeds the range offered by the bit depth as

coded for that frame. E.g. in a frame with a bit depth of 8 bits, any samples not in the

inclusive range from -128 to 127 are invalid.

The number of wasted bits (see section wasted bits per sample) of a subframe is such

that the bit depth of that subframe (see section constant subframe for a description of

subframe bit depth) equals zero or is negative

A frame header CRC (see section frame header CRC) or frame footer CRC (see section

frame footer) does not validate

One of the invalid bit patterns described in table 1 above is used

•

•

•

•

6. Format lay-out

Before the formal description of the stream, an overview of the lay-out of FLAC file might be

helpful.

A FLAC bitstream consists of the fLaC (i.e. 0x664C6143) marker at the beginning of the

stream, followed by a mandatory metadata block (called the STREAMINFO block), any

number of other metadata blocks, then the audio frames.

FLAC supports up to 128 kinds of metadata blocks; currently 7 kinds are defined in the

section file-level metadata.

The audio data is composed of one or more audio frames. Each frame consists of a frame

header, which contains a sync code, information about the frame like the block size, sample

rate, number of channels, et cetera, and an 8-bit CRC. The frame header also contains

either the sample number of the first sample in the frame (for variable block size streams),

or the frame number (for fixed block size streams). This allows for fast, sample-accurate

seeking to be performed. Following the frame header are encoded subframes, one for each

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 11

channel. The frame is then zero-padded to a byte boundary and finished with a frame

footer containing a checksum for the frame. Each subframe has its own header that

specifies how the subframe is encoded.

In order to allow a decoder to start decoding at any place in the stream, each frame starts

with a byte-aligned 15-bit sync code. However, since it is not guaranteed the sync code

does not appear elsewhere in the frame, the decoder can check that it synced correctly by

parsing the rest of the frame header and validating the frame header CRC.

Furthermore, to allow a decoder to start decoding at any place in the stream even without

having received a streaminfo metadata block, each frame header contains some basic

information about the stream. This information includes sample rate, bits per sample,

number of channels, etc. Since the frame header is pure overhead, it has a direct effect on

the compression ratio. To keep the frame header as small as possible, FLAC uses lookup

tables for the most commonly used values for frame properties. When a certain property

has a value that is not covered by the lookup table, the decoder is directed to find the value

of that property (for example the sample rate) at the end of the frame header or in the

streaminfo metadata block. If a frame header refers to the streaminfo metadata block, the

file is not 'streamable', see section streamable subset for details. In this way, the file is

streamable and the frame header size small for all of the most common forms of audio

data.

Individual subframes (one for each channel) are coded separately within a frame, and

appear serially in the stream. In other words, the encoded audio data is NOT channel-

interleaved. This reduces decoder complexity at the cost of requiring larger decode buffers.

Each subframe has its own header specifying the attributes of the subframe, like prediction

method and order, residual coding parameters, etc. Each subframe header is followed by

the encoded audio data for that channel.

7. Streamable subset

The FLAC format specifies a subset of itself as the FLAC streamable subset. The purpose of

this is to ensure that any streams encoded according to this subset are truly "streamable",

meaning that a decoder that cannot seek within the stream can still pick up in the middle of

the stream and start decoding. It also makes hardware decoder implementations more

practical by limiting the encoding parameters such that decoder buffer sizes and other

resource requirements can be easily determined. The flac command-line tool, part of the

FLAC reference implementation, (see section implementation status) generates streamable

subset files by default unless the --lax command-line option is used. The streamable

subset makes the following limitations on what MAY be used in the stream:

The sample rate bits in the frame header MUST be 0b0001-0b1110, i.e. the frame

header MUST NOT refer to the streaminfo metadata block to describe the sample rate.

The bits depth bits in the frame header MUST be 0b001-0b111, i.e. the frame header

MUST NOT refer to the streaminfo metadata block to describe the bit depth.

The stream MUST NOT contain blocks with more than 16384 inter-channel samples, i.e.

the maximum block size must not be larger than 16384.

Audio with a sample rate less than or equal to 48000 Hz MUST NOT be contained in

blocks with more than 4608 inter-channel samples, i.e. the maximum block size used

for this audio must not be larger than 4608.

Linear prediction subframes (see section linear predictor subframe) containing audio

with a sample rate less than or equal to 48000 Hz MUST have a predictor order less

•

•

•

•

•

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 12

than or equal to 12, i.e. the subframe type bits in the subframe header (see subframe

header section) MUST NOT be 0b101100-0b111111.

The Rice partition order (see coded residual section) MUST be less than or equal to 8.

The channel ordering MUST be equal to one defined in the section channels bits, i.e. the

FLAC file MUST NOT need a WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag to describe

the channel ordering. See section channel mask for details.

•

•

8. File-level metadata

At the start of a FLAC file or stream, following the fLaC ASCII file signature, one or more

metadata blocks MUST be present before any audio frames appear. The first metadata

block MUST be a streaminfo block.

8.1. Metadata block header

Each metadata block starts with a 4 byte header. The first bit in this header flags whether a

metadata block is the last one, it is a 0 when other metadata blocks follow, otherwise it is a

1. The 7 remaining bits of the first header byte contain the type of the metadata block as

an unsigned number between 0 and 126 according to the following table. A value of 127

(i.e. 0b1111111) is invalid. The three bytes that follow code for the size of the metadata

block in bytes excluding the 4 header bytes as an unsigned number coded big-endian.

Value Metadata block type

0 Streaminfo

1 Padding

2 Application

3 Seektable

4 Vorbis comment

5 Cuesheet

6 Picture

7 - 126 reserved

127 invalid, to avoid confusion with a frame sync code

Table 2

8.2. Streaminfo

The streaminfo metadata block has information about the whole stream, like sample rate,

number of channels, total number of samples, etc. It MUST be present as the first metadata

block in the stream. Other metadata blocks MAY follow. There MUST be no more than one

streaminfo metadata block per FLAC stream.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 13

If the streaminfo metadata block contains incorrect or incomplete information, decoder

behavior is left unspecified (i.e. up to the decoder implementation). A decoder MAY choose

to stop further decoding when the information supplied by the streaminfo metadata block

turns out to be incorrect or invalid. A decoder accepting information from the streaminfo

block (most significantly the maximum frame size, maximum block size, number of audio

channels, number of bits per sample and total number of samples) without doing further

checks during decoding of audio frames could be vulnerable to buffer overflows. See also

the section on security considerations.

Data Description

u(16) The minimum block size (in samples) used in the stream, excluding the last

block.

u(16) The maximum block size (in samples) used in the stream.

u(24) The minimum frame size (in bytes) used in the stream. A value of 0 signifies

that the value is not known.

u(24) The maximum frame size (in bytes) used in the stream. A value of 0 signifies

that the value is not known.

u(20) Sample rate in Hz.

u(3) (number of channels)-1. FLAC supports from 1 to 8 channels.

u(5) (bits per sample)-1. FLAC supports from 4 to 32 bits per sample.

u(36) Total samples in stream. 'Samples' means inter-channel sample, i.e. one

second of 44.1 kHz audio will have 44100 samples regardless of the number of

channels. A value of zero here means the number of total samples is unknown.

u(128) MD5 signature of the unencoded audio data. This allows the decoder to

determine if an error exists in the audio data even when the error does not

result in an invalid bitstream. A value of 0 signifies that the value is not known.

Table 3

The minimum block size and the maximum block size MUST be in the 16-65535 range. The

minimum block size MUST be equal to or less than the maximum block size.

Any frame but the last one MUST have a block size equal to or greater than the minimum

block size and MUST have a block size equal to or lesser than the maximum block size. The

last frame MUST have a block size equal to or lesser than the maximum block size, it does

not have to comply to the minimum block size because the block size of that frame must be

able to accommodate for the length of the audio data the stream contains.

If the minimum block size is equal to the maximum block size, the file contains a fixed block

size stream, as the minimum block size excludes the last block. Note that in case of a

stream with a variable block size, the actual maximum block size MAY be smaller than the

maximum block size listed in the streaminfo block, and the actual smallest block size

excluding the last block MAY be larger than the minimum block size listed in the streaminfo

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 14

block. This is because the encoder has to write these fields before receiving any input audio

data, and cannot know beforehand what block sizes it will use, only between what bounds

these will be chosen.

The sample rate MUST NOT be 0 when the FLAC file contains audio. A sample rate of 0 MAY

be used when non-audio is represented. This is useful if data is encoded that is not along a

time axis, or when the sample rate of the data lies outside the range that FLAC can

represent in the streaminfo metadata block. If a sample rate of 0 is used it is

RECOMMENDED to store the meaning of the encoded content in a Vorbis comment field

(see Vorbis comment metadata block or an application metadata block (see application

metadata block. This document does not define such metadata.

The MD5 signature is made by performing an MD5 transformation on the samples of all

channels interleaved, represented in signed, little-endian form. This interleaving is on a per-

sample basis, so for a stereo file this means first the first sample of the first channel, then

the first sample of the second channel, then the second sample of the first channel etc.

Before performing the MD5 transformation, all samples must be byte-aligned. If the bit

depth is not a whole number of bytes, the value of each sample is sign extended to the

next whole number of bytes.

So, in the case of a 2-channel stream with 6-bit samples, bits will be lined-up as follows.

As another example, in the case of a 1-channel with 12-bit samples, bits are lined-up as

follows, showing the little-endian byte order

SSAAAAAASSBBBBBBSSCCCCCC

^ ^ ^ ^ ^ ^

| | | | | Bits of 2nd sample of 1st channel

| | | | Sign extension bits of 2nd sample of 2nd channel

| | | Bits of 1st sample of 2nd channel

| | Sign extension bits of 1st sample of 2nd channel

| Bits of 1st sample of 1st channel

Sign extention bits of 1st sample of 1st channel

AAAAAAAASSSSAAAABBBBBBBBSSSSBBBB

 ^ ^ ^ ^ ^ ^

 | | | | | Most significant 4 bits of 2nd sample

 | | | | Sign extension bits of 2nd sample

 | | | Least significant 8 bits of 2nd sample

 | | Most significant 4 bits of 1st sample

 | Sign extension bits of 1st sample

 Least significant 8 bits of 1st sample

8.3. Padding

The padding metadata block allows for an arbitrary amount of padding. This block is useful

when it is known that metadata will be edited after encoding; the user can instruct the

encoder to reserve a padding block of sufficient size so that when metadata is added, it will

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 15

simply overwrite the padding (which is relatively quick) instead of having to insert it into

the right place in the existing file (which would normally require rewriting the entire file).

There MAY be one or more padding metadata blocks per FLAC stream.

Data Description

u(n) n '0' bits (n MUST be a multiple of 8, i.e. a whole number of bytes, and MAY be

zero)

Table 4

8.4. Application

The application metadata block is for use by third-party applications. The only mandatory

field is a 32-bit identifier. An ID registry is being maintained at https://xiph.org/flac/id.html.

Data Description

u(32) Registered application ID. (Visit the registration page to register an ID with

FLAC.)

u(n) Application data (n MUST be a multiple of 8, i.e. a whole number of bytes)

Table 5

8.5. Seektable

The seektable metadata block can be used to store seek points. It is possible to seek to any

given sample in a FLAC stream without a seek table, but the delay can be unpredictable

since the bitrate may vary widely within a stream. By adding seek points to a stream, this

delay can be significantly reduced. There MUST NOT be more than one seektable metadata

block in a stream, but the table can have any number of seek points.

Each seek point takes 18 bytes, so a seek table with 1% resolution within a stream adds

less than 2 kilobyte of data. The number of seek points is implied by the metadata header

'length' field, i.e. equal to length / 18. There is also a special 'placeholder' seekpoint which

will be ignored by decoders but which can be used to reserve space for future seek point

insertion.

Data Description

SEEKPOINT+ One or more seek points.

Table 6

A seektable is generally not usable for seeking in a FLAC file embedded in a container, as

such containers usually interleave FLAC data with other data and the offsets used in

seekpoints are those of an unmuxed FLAC stream. Also, containers often provide their own

seeking methods. It is however possible to store the seektable in the container along with

other metadata when muxing a FLAC file, so this stored seektable can be restored on

demuxing the FLAC stream into a standalone FLAC file.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 16

https://xiph.org/flac/id.html
https://xiph.org/flac/id.html

8.5.1. Seekpoint

Data Description

u(64) Sample number of first sample in the target frame, or 0xFFFFFFFFFFFFFFFF for a

placeholder point.

u(64) Offset (in bytes) from the first byte of the first frame header to the first byte of

the target frame's header.

u(16) Number of samples in the target frame.

Table 7

NOTES

For placeholder points, the second and third field values are undefined.

Seek points within a table MUST be sorted in ascending order by sample number.

Seek points within a table MUST be unique by sample number, with the exception of

placeholder points.

The previous two notes imply that there MAY be any number of placeholder points, but

they MUST all occur at the end of the table.

The sample offsets are those of an unmuxed FLAC stream. The offsets MUST NOT be

updated on muxing to reflect new offsets of FLAC frames in a container.

•

•

•

•

•

8.6. Vorbis comment

A Vorbis comment metadata block contains human-readable information coded in UTF-8.

The name Vorbis comment points to the fact that the Vorbis codec stores such metadata in

almost the same way, see . A Vorbis comment metadata block consists of a vendor

string optionally followed by a number of fields, which are pairs of field names and field

contents. Many users refer to these fields as FLAC tags or simply as tags. A FLAC file MUST

NOT contain more than one Vorbis comment metadata block.

In a Vorbis comment metadata block, the metadata block header is directly followed by 4

bytes containing the length in bytes of the vendor string as an unsigned number coded

little-endian. The vendor string follows UTF-8 coded, and is not terminated in any way.

Following the vendor string are 4 bytes containing the number of fields that are in the

Vorbis comment block, stored as an unsigned number, coded little-endian. If this number is

non-zero, it is followed by the fields themselves, each field stored with a 4 byte length. First,

the 4 byte field length in bytes is stored as an unsigned number, coded little-endian. The

field itself is, like the vendor string, UTF-8 coded, not terminated in any way.

Each field consists of a field name and a field content, separated by an = character. The

field name MUST only consist of UTF-8 code points U+0020 through U+007E, excluding

U+003D, which is the = character. In other words, the field name can contain all printable

ASCII characters except the equals sign. The evaluation of the field names MUST be case

insensitive, so U+0041 through 0+005A (A-Z) MUST be considered equivalent to U+0061

through U+007A (a-z) respectively. The field contents can contain any UTF-8 character.

[Vorbis]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 17

Note that the Vorbis comment as used in Vorbis allows for on the order of 2^64 bytes of

data whereas the FLAC metadata block is limited to 2^24 bytes. Given the stated purpose

of Vorbis comments, i.e. human-readable textual information, the FLAC metadata block limit

is unlikely to be restrictive. Also note that the 32-bit field lengths are coded little-endian, as

opposed to the usual big-endian coding of fixed-length integers in the rest of the FLAC

format.

8.6.1. Standard field names

Except the one defined in the section channel mask, no standard field names are defined.

In general, most FLAC playback devices and software recognize the following field names:

Title: name of the current work

Artist: name of the artist generally responsible for the current work. For orchestral

works this is usually the composer, otherwise is it often the performer

Album: name of the collection the current work belongs to

For a more comprehensive list of possible field names, the list of tags used in the

MusicBrainz project is recommended.

•

•

•

8.6.2. Channel mask

Besides fields containing information about the work itself, one field is defined for technical

reasons, of which the field name is WAVEFORMATEXTENSIBLE_CHANNEL_MASK. This field is

used to communicate that the channels in a file differ from the default channels defined in

the section channels bits. For example, by default a FLAC file containing two channels is

interpreted to contain a left and right channel, but with this field it is possible to describe

different channel contents.

The channel mask consists of flag bits indicating which channels are present, stored in a

hexadecimal representation preceded by 0x. The flags only signal which channels are

present, not in which order, so if a file has to be encoded in which channels are ordered

differently, they have to be reordered. Please note that a file in which the channel order is

defined through the WAVEFORMATEXTENSIBLE_CHANNEL_MASK is not streamable (see

section streamable subset), as the field is not found in each frame header. The mask bits

can be found in the following table

Bit number Channel description

0 Front left

1 Front right

2 Front center

3 Low-frequency effects (LFE)

4 Back left

5 Back right

6 Front left of center

7 Front right of center

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 18

http://picard-docs.musicbrainz.org/en/variables/variables.html
http://picard-docs.musicbrainz.org/en/variables/variables.html

Bit number Channel description

8 Back center

9 Side left

10 Side right

11 Top center

12 Top front left

13 Top front center

14 Top front right

15 Top rear left

16 Top rear center

17 Top rear right

Table 8

Following are 3 examples:

if a file has a single channel, being a LFE channel, the Vorbis comment field is

WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x8

if a file has 4 channels, being front left, front right, top front left and top front right, the

Vorbis comment field is WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x5003

if an input has 4 channels, being back center, top front center, front center and top rear

center in that order, they have to be reordered to front center, back center, top front

center and top rear center. The Vorbis comment field added is

WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x12104.

WAVEFORMATEXTENSIBLE_CHANNEL_MASK fields MAY be padded with zeros, for example,

0x0008 for a single LFE channel. Parsing of WAVEFORMATEXTENSIBLE_CHANNEL_MASK

fields MUST be case-insensitive for both the field name and the field contents.

A WAVEFORMATEXTENSIBLE_CHANNEL_MASK field of 0x0 can be used to indicate that none

of the audio channels of a file correlate with speaker positions. This is the case when audio

needs to be decoded into speaker positions (e.g. Ambisonics B-format audio) or when a

multitrack recording is contained.

It is possible for a WAVEFORMATEXTENSIBLE_CHANNEL_MASK field to code for fewer

channels than present in the audio. If that is the case, the remaining channels SHOULD NOT

be rendered by a playback application unfamiliar with their purpose. For example, the

Ambisonics UHJ format is compatible with stereo playback, its first two channels can be

played back on stereo equipment, but all four channels together can be decoded into

surround sound. For that example, the Vorbis comment field

WAVEFORMATEXTENSIBLE_CHANNEL_MASK=0x3 would be set, indicating the first two

channels are front left and front right, and other channels do not correlate with speaker

positions directly.

•

•

•

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 19

If audio channels not assigned to any speaker are contained and decoding to speaker

positions is possible, it is RECOMMENDED to provide metadata on how this decoding should

take place in another Vorbis comment field or an application metadata block. This

document does not define such metadata.

8.7. Cuesheet

To either store the track and index point structure of a CD-DA along with its audio or to

provide a mechanism to store locations of interest within a FLAC file, a cuesheet metadata

block can be used. Certain aspects of this metadata block follow directly from the CD-DA

specification, called Red Book, which is standardized as . For more

information on the function and history of these aspects, please refer to .

The structure of a cuesheet metadata block is enumerated in the following table.

Data Description

u(128*8) Media catalog number, in ASCII printable characters 0x20-0x7E.

u(64) Number of lead-in samples.

u(1) 1 if the cuesheet corresponds to a Compact Disc, else 0.

u(7+258*8) Reserved. All bits MUST be set to zero.

u(8) Number of tracks in this cuesheet.

Cuesheet

tracks

A number of structures as specified in the section cuesheet track equal

to the number of tracks specified previously.

Table 9

If the media catalog number is less than 128 bytes long, it is right-padded with NUL

characters. For CD-DA, this is a thirteen digit number, followed by 115 NUL bytes.

The number of lead-in samples has meaning only for CD-DA cuesheets; for other uses it

SHOULD be 0. For CD-DA, the lead-in is the TRACK 00 area where the table of contents is

stored; more precisely, it is the number of samples from the first sample of the media to the

first sample of the first index point of the first track. According to , the

lead-in MUST be silence and CD grabbing software does not usually store it; additionally,

the lead-in MUST be at least two seconds but MAY be longer. For these reasons the lead-in

length is stored here so that the absolute position of the first track can be computed. Note

that the lead-in stored here is the number of samples up to the first index point of the first

track, not necessarily to INDEX 01 of the first track; even the first track MAY have INDEX 00

data.

The number of tracks MUST be at least 1, as a cuesheet block MUST have a lead-out track.

For CD-DA, this number MUST be no more than 100 (99 regular tracks and one lead-out

track). The lead-out track is always the last track in the cuesheet. For CD-DA, the lead-out

track number MUST be 170 as specified by , otherwise it MUST be 255.

[IEC.60908.1999]

[IEC.60908.1999]

[IEC.60908.1999]

[IEC.60908.1999]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 20

8.7.1. Cuesheet track

Data Description

u(64) Track offset of first index point in samples, relative to the beginning

of the FLAC audio stream.

u(8) Track number.

u(12*8) Track ISRC.

u(1) The track type: 0 for audio, 1 for non-audio. This corresponds to the

CD-DA Q-channel control bit 3.

u(1) The pre-emphasis flag: 0 for no pre-emphasis, 1 for pre-emphasis.

This corresponds to the CD-DA Q-channel control bit 5.

u(6+13*8) Reserved. All bits MUST be set to zero.

u(8) The number of track index points.

Cuesheet track

index points

For all tracks except the lead-out track, a number of structures as

specified in the section cuesheet track index point equal to the

number of index points specified previously.

Table 10

Note that the track offset differs from the one in CD-DA, where the track's offset in the TOC

is that of the track's INDEX 01 even if there is an INDEX 00. For CD-DA, the track offset

MUST be evenly divisible by 588 samples (588 samples = 44100 samples/s * 1/75 s).

A track number of 0 is not allowed, because the CD-DA spec reserves this for the lead-in.

For CD-DA the number MUST be 1-99, or 170 for the lead-out; for non-CD-DA, the track

number MUST be 255 for the lead-out. It is RECOMMENDED to start with track 1 and

increase sequentially. Track numbers MUST be unique within a cuesheet.

The track ISRC (International Standard Recording Code) is a 12-digit alphanumeric code;

see . A value of 12 ASCII NUL characters MAY be used to denote absence of

an ISRC.

There MUST be at least one index point in every track in a cuesheet except for the lead-out

track, which MUST have zero. For CD-DA, the number of index points SHOULD NOT be more

than 100.

[ISRC-handbook]

8.7.1.1. Cuesheet track index point

Data Description

u(64) Offset in samples, relative to the track offset, of the index point.

u(8) The track index point number.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 21

Data Description

u(3*8) Reserved. All bits MUST be set to zero.

Table 11

For CD-DA, the track index point offset MUST be evenly divisible by 588 samples (588

samples = 44100 samples/s * 1/75 s). Note that the offset is from the beginning of the

track, not the beginning of the audio data.

For CD-DA, an track index point number of 0 corresponds to the track pre-gap. The first

index point in a track MUST have a number of 0 or 1, and subsequently, index point

numbers MUST increase by 1. Index point numbers MUST be unique within a track.

8.8. Picture

The picture metadata block contains image data of a picture in some way belonging to the

audio contained in the FLAC file. Its format is derived from the APIC frame in the ID3v2

specification. However, contrary to the APIC frame in ID3v2, the media type and description

are prepended with a 4-byte length field instead of being null delimited strings. A FLAC file

MAY contain one or more picture metadata blocks.

Note that while the length fields for media type, description and picture data are 4 bytes in

length and could in theory code for a size up to 4 GiB, the total metadata block size cannot

exceed what can be described by the metadata block header, i.e. 16 MiB.

The structure of a picture metadata block is enumerated in the following table.

Data Description

u(32) The picture type according to next table

u(32) The length of the media type string in bytes.

u(n*8) The media type string, in printable ASCII characters 0x20-0x7E. The media

type MAY also be --> to signify that the data part is a URI of the picture

instead of the picture data itself.

u(32) The length of the description string in bytes.

u(n*8) The description of the picture, in UTF-8.

u(32) The width of the picture in pixels.

u(32) The height of the picture in pixels.

u(32) The color depth of the picture in bits-per-pixel.

u(32) For indexed-color pictures (e.g. GIF), the number of colors used, or 0 for non-

indexed pictures.

u(32) The length of the picture data in bytes.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 22

Data Description

u(n*8) The binary picture data.

Table 12

The height, width, color depth and 'number of colors' fields are for informational purposes

only. Applications MUST NOT use them in decoding the picture or deciding how to display it,

but MAY use them to decide to process a block or not (e.g. when selecting between

different pictures blocks) and MAY show them to the user. If a picture has no concept for

any of these fields (e.g. vector images may not have a height or width in pixels) or the

content of any field is unknown, the affected fields MUST be set to zero.

The following table contains all defined picture types. Values other than those listed in the

table are reserved. There MAY only be one each of picture type 1 and 2 in a file. In general

practice, many FLAC playback devices and software display the contents of a picture

metadata block with picture type 3 (front cover) during playback, if present.

Value Picture type

0 Other

1 PNG file icon of 32x32 pixels

2 General file icon

3 Front cover

4 Back cover

5 Liner notes page

6 Media label (e.g. CD, Vinyl or Cassette label)

7 Lead artist, lead performer or soloist

8 Artist or performer

9 Conductor

10 Band or orchestra

11 Composer

12 Lyricist or text writer

13 Recording location

14 During recording

15 During performance

16 Movie or video screen capture

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 23

Value Picture type

17 A bright colored fish

18 Illustration

19 Band or artist logotype

20 Publisher or studio logotype

Table 13

If not a picture but a URI is contained in this block, the following points apply:

The URI can be either in absolute or in relative form. If an URI is in relative form, it is

related to the URI of the FLAC content processed.

Applications MUST obtain explicit user approval to retrieve images via remote protocols

and to retrieve local images not located in the same directory as the FLAC file being

processed.

Applications supporting linked images MUST handle unavailability of URIs gracefully.

They MAY report unavailability to the user.

Applications MAY reject processing URIs for any reason, in particular for security or

privacy reasons.

•

•

•

•

9. Frame structure

Directly after the last metadata block, one or more frames follow. Each frame consists of a

frame header, one or more subframes, padding zero bits to achieve byte-alignment and a

frame footer. The number of subframes in each frame is equal to the number of audio

channels.

Each frame header stores the audio sample rate, number of bits per sample and number of

channels independently of the streaminfo metadata block and other frame headers. This

was done to permit multicasting of FLAC files but it also allows these properties to change

mid-stream. Because not all environments in which FLAC decoders are used are able to

cope with changes to these properties during playback, a decoder MAY choose to stop

decoding on such a change. A decoder that does not check for such a change could be

vulnerable to buffer overflows. See also the section on security considerations.

Note that storing audio with changing audio properties in FLAC results in various practical

problems. For example, these changes of audio properties must happen on a frame

boundary, or the process will not be lossless. When a variable block size is chosen to

accommodate this, note that blocks smaller than 16 samples are not allowed and it is

therefore not possible to store an audio stream in which these properties change within 16

samples of the last change or the start of the file. Also, since the streaminfo metadata block

can only accommodate a single set of properties, it is only valid for part of such an the

audio stream. Instead, it is RECOMMENDED to store an audio stream with changing

properties in FLAC encapsulated in a container capable of handling such changes, as these

do not suffer from the mentioned limitations. See section container mappings for details.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 24

9.1. Frame header

Each frame MUST start on a byte boundary and starts with the 15-bit frame sync code

0b111111111111100. Following the sync code is the blocking strategy bit, which MUST NOT

change during the audio stream. The blocking strategy bit is 0 for a fixed block size stream

or 1 for variable block size stream. If the blocking strategy is known, a decoder can include

this bit when searching for the start of a frame to reduce the possibility of encountering a

false positive, as the first two bytes of a frame are either 0xFFF8 for a fixed block size

stream or 0xFFF9 for a variable block size stream.

9.1.1. Block size bits

Following the frame sync code and block size strategy bit are 4 bits (the first 4 bits of the

third byte of each frame) referred to as the block size bits. Their value relates to the block

size according to the following table, where v is the value of the 4 bits as an unsigned

number. If the block size bits code for an uncommon block size, this is stored after the

coded number, see section uncommon block size.

Value Block size

0b0000 reserved

0b0001 192

0b0010 - 0b0101 144 * (2^v), i.e. 576, 1152, 2304 or 4608

0b0110 uncommon block size minus 1 stored as an 8-bit number

0b0111 uncommon block size minus 1 stored as a 16-bit number

0b1000 - 0b1111 2^v, i.e. 256, 512, 1024, 2048, 4096, 8192, 16384 or 32768

Table 14

9.1.2. Sample rate bits

The next 4 bits (the last 4 bits of the third byte of each frame), referred to as the sample

rate bits, contain the sample rate of the audio according to the following table. If the

sample rate bits code for an uncommon sample rate, this is stored after the uncommon

block size or after the coded number if no uncommon block size was used. See section

uncommon sample rate.

Value Sample rate

0b0000 sample rate only stored in streaminfo metadata block

0b0001 88.2 kHz

0b0010 176.4 kHz

0b0011 192 kHz

0b0100 8 kHz

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 25

Value Sample rate

0b0101 16 kHz

0b0110 22.05 kHz

0b0111 24 kHz

0b1000 32 kHz

0b1001 44.1 kHz

0b1010 48 kHz

0b1011 96 kHz

0b1100 uncommon sample rate in kHz stored as an 8-bit number

0b1101 uncommon sample rate in Hz stored as a 16-bit number

0b1110 uncommon sample rate in Hz divided by 10, stored as a 16-bit number

0b1111 invalid

Table 15

9.1.3. Channels bits

The next 4 bits (the first 4 bits of the fourth byte of each frame), referred to as the channels

bits, contain both the number of channels of the audio as well as any stereo decorrelation

used according to the following table.

If a channel lay-out different than the ones listed in the following table is used, this can be

signaled with a WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag in a Vorbis comment

metadata block, see the section channel mask for details. Note that even when such a

different channel lay-out is specified with a WAVEFORMATEXTENSIBLE_CHANNEL_MASK and

the channel ordering in the following table is overriden, the channels bits still contain the

actual number of channel coded in the frame. For details on the way left/side, right/side and

mid/side stereo are coded, see the section on interchannel decorrelation.

Value Channels

0b0000 1 channel: mono

0b0001 2 channels: left, right

0b0010 3 channels: left, right, center

0b0011 4 channels: front left, front right, back left, back right

0b0100 5 channels: front left, front right, front center, back/surround left, back/

surround right

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 26

Value Channels

0b0101 6 channels: front left, front right, front center, LFE, back/surround left,

back/surround right

0b0110 7 channels: front left, front right, front center, LFE, back center, side

left, side right

0b0111 8 channels: front left, front right, front center, LFE, back left, back

right, side left, side right

0b1000 2 channels, left, right, stored as left/side stereo

0b1001 2 channels, left, right, stored as right/side stereo

0b1010 2 channels, left, right, stored as mid/side stereo

0b1011 -

0b1111

reserved

Table 16

9.1.4. Bit depth bits

The next 3 bits (bits 5, 6 and 7 of each fourth byte of each frame) contain the bit depth of

the audio according to the following table.

Value Bit depth

0b000 bit depth only stored in streaminfo metadata block

0b001 8 bits per sample

0b010 12 bits per sample

0b011 reserved

0b100 16 bits per sample

0b101 20 bits per sample

0b110 24 bits per sample

0b111 32 bits per sample

Table 17

The next bit is reserved and MUST be zero.

9.1.5. Coded number

Following the reserved bit (starting at the fifth byte of the frame) is either a sample or a

frame number, which will be referred to as the coded number. When dealing with variable

block size streams, the sample number of the first sample in the frame is encoded. When

the file contains a fixed block size stream, the frame number is encoded.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 27

The coded number is stored in a variable length code like UTF-8 as defined in ,

but extended to a maximum of 36 bits unencoded, 7 byte encoded.

When a frame number is encoded, the value MUST NOT be larger than what fits a value 31

bits unencoded or 6 byte encoded. Please note that as most general purpose UTF-8

encoders and decoders follow , they will not be able to handle these extended

codes. Furthermore, while UTF-8 is specifically used to encode characters, FLAC uses it to

encode numbers instead. To encode or decode a coded number, follow the procedures of

section 3 of , but instead of using a character number, use a frame or sample

number, and instead of the table in section 3 of , use the extended table below.

Number range
(hexadecimal)

Octet sequence (binary)

0000 0000 0000 -

0000 0000 007F

0xxxxxxx

0000 0000 0080 -

0000 0000 07FF

110xxxxx 10xxxxxx

0000 0000 0800 -

0000 0000 FFFF

1110xxxx 10xxxxxx 10xxxxxx

0000 0001 0000 -

0000 001F FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0000 0020 0000 -

0000 03FF FFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0000 0400 0000 -

0000 7FFF FFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx

0000 8000 0000 -

000F FFFF FFFF

11111110 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx

Table 18

If the coded number is a frame number, it MUST be equal to the number of frames

preceding the current frame. If the coded number is a sample number, it MUST be equal to

the number of samples preceding the current frame. In a stream where these requirements

are not met, seeking is not (reliably) possible.

For example, a frame that belongs to a variable block size stream and has exactly 51 billion

samples preceding it, has its coded number constructed as follows.

[RFC3629]

[RFC3629]

[RFC3629]

[RFC3629]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 28

A decoder that relies on the coded number during seeking could be vulnerable to buffer

overflows or getting stuck in an infinite loop if it seeks in a stream where the coded

numbers are non-consecutive or otherwise invalid. See also the section on security

considerations.

Octets 1-5

0b11111110 0b10101111 0b10011111 0b10110101 0b10100011

 ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^

 | | | Bits 18-13

 | | Bits 24-19

 | Bits 30-25

 Bits 36-31

Octets 6-7

0b10111000 0b10000000

 ^^^^^^ ^^^^^^

 | Bits 6-1

 Bits 12-7

9.1.6. Uncommon block size

If the block size bits defined earlier in this section were 0b0110 or 0b0111 (uncommon

block size minus 1 stored), this follows the coded number as either an 8-bit or a 16-bit

unsigned number coded big-endian. A value of 65535 (corresponding to a block size of

65536) is invalid and MUST NOT be used, because such a block size cannot be represented

in the streaminfo metadata block. A value from 0 up to (and including) 14, which

corresponds to a block size from 1 to 15, is only valid for the last frame in a stream and

MUST NOT be used for any other frame. See also the section on the streaminfo metadata

block.

9.1.7. Uncommon sample rate

Following the uncommon block size (or the coded number if no uncommon block size is

stored) is the sample rate, if the sample rate bits were 0b1100, 0b1101 or 0b1110

(uncommon sample rate stored), as either an 8-bit or a 16-bit unsigned number coded big-

endian.

The sample rate MUST NOT be 0 when the subframe contains audio. A sample rate of 0 MAY

be used when non-audio is represented. See section streaminfo for details.

9.1.8. Frame header CRC

Finally, after either the frame/sample number, an uncommon block size or an uncommon

sample rate, depending on whether the latter two are stored, is an 8-bit CRC. This CRC is

initialized with 0 and has the polynomial x^8 + x^2 + x^1 + x^0. This CRC covers the

whole frame header before the CRC, including the sync code.

9.2. Subframes

Following the frame header are a number of subframes equal to the number of audio

channels. Note that as subframes contain a bitstream that does not necessarily has to be a

whole number of bytes, only the first subframe always starts at a byte boundary.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 29

9.2.1. Subframe header

Each subframe starts with a header. The first bit of the header MUST be 0, followed by 6

bits describing which subframe type is used according to the following table, where v is the

value of the 6 bits as an unsigned number.

Value Subframe type

0b000000 Constant subframe

0b000001 Verbatim subframe

0b000010 -

0b000111

reserved

0b001000 -

0b001100

Subframe with a fixed predictor of order v-8, i.e. 0, 1, 2, 3 or 4

0b001101 -

0b011111

reserved

0b100000 -

0b111111

Subframe with a linear predictor of order v-31, i.e. 1 through 32

(inclusive)

Table 19

Following the subframe type bits is a bit that flags whether the subframe has any wasted

bits. If it is 0, the subframe doesn't have any wasted bits and the subframe header is

complete. If it is 1, the subframe does have wasted bits and the number of wasted bits

follows unary coded.

9.2.2. Wasted bits per sample

Certain file formats, like AIFF, can store audio samples with a bit depth that is not an

integer number of bytes by padding them with least significant zero bits to a bit depth that

is an integer number of bytes. For example, shifting a 14-bit sample right by 2 pads it to a

16-bit sample, which then has two zero least-significant bits. In this specification, these

least-significant zero bits are referred to as wasted bits-per-sample or simply wasted bits.

They are wasted in a sense that they contain no information, but are stored anyway.

The wasted bits-per-sample flag in a subframe header is set to 1 if such wasted bits are

present in that subframe. If this is the case, the number of wasted bits-per-sample (k)

minus 1 follows the flag in an unary encoding. For example, if k is 3, 0b001 follows. If k = 0,

the wasted bits-per-sample flag is 0 and no unary coded k follows.

If k is not equal to 0, samples are coded ignoring k least-significant bits. For example, if a

frame not employing stereo decorrelation specifies a sample size of 16 bits per sample in

the frame header and k of a subframe is 3, samples in the subframe are coded as 13 bits

per sample. For more details, see section constant subframe on how the bit depth of a

subframe is calculated. A decoder MUST add k least-significant zero bits by shifting left

(padding) after decoding a subframe sample. If the frame has left/side, right/side or mid/

side stereo, a decoder MUST perform padding on the subframes before decorrelating the

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 30

channels to left and right. The number of wasted bits per sample MUST be such that the

resulting number of bits per sample (of which the calculation is explained in section

constant subframe) is larger than zero.

Besides audio files that have a certain number of wasted bits for the whole file, there exist

audio files in which the number of wasted bits varies. There are DVD-Audio discs in which

blocks of samples have had their least-significant bits selectively zeroed, as to slightly

improve the compression of their otherwise lossless Meridian Lossless Packing codec. There

are also audio processors like lossyWAV that enable users to improve compression of their

files by a lossless audio codec in a non-lossless way. Because of this the number of wasted

bits k MAY change between frames and MAY differ between subframes. If the number of

wasted bits changes halfway a subframe (e.g. the first part has 2 wasted bits and the

second part has 4 wasted bits) the subframe uses the lowest common denominator, as

otherwise it bits would be discarded and the process would not be lossless.

9.2.3. Constant subframe

In a constant subframe only a single sample is stored. This sample is stored as an integer

number coded big-endian, signed two's complement. The number of bits used to store this

sample depends on the bit depth of the current subframe. The bit depth of a subframe is

equal to the bit depth as coded in the frame header, minus the number of wasted bits

coded in the subframe header. If a subframe is a side subframe (see the section on

interchannel decorrelation), the bit depth of that subframe is increased by 1 bit.

9.2.4. Verbatim subframe

A verbatim subframe stores all samples unencoded in sequential order. See section on

Constant subframe on how a sample is stored unencoded. The number of samples that

need to be stored in a subframe is given by the block size in the frame header.

9.2.5. Fixed predictor subframe

Five different fixed predictors are defined in the following table, one for each prediction

order 0 through 4. In the table is also a derivation, which explains the rationale for choosing

these fixed predictors.

Order Prediction Derivation

0 0 N/A

1 a(n-1) N/A

2 2 * a(n-1) - a(n-2) a(n-1) + a'(n-1)

3 3 * a(n-1) - 3 * a(n-2) + a(n-3) a(n-1) + a'(n-1) + a''(n-1)

4 4 * a(n-1) - 6 * a(n-2) + 4 * a(n-3) -

a(n-4)

a(n-1) + a'(n-1) + a''(n-1) +

a'''(n-1)

Table 20

Where

n is the number of the sample being predicted

a(n) is the sample being predicted

•

•

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 31

a(n-1) is the sample before the one being predicted

a'(n-1) is the difference between the previous sample and the sample before that, i.e.

a(n-1) - a(n-2). This is the closest available first-order discrete derivative

a''(n-1) is a'(n-1) - a'(n-2) or the closest available second-order discrete derivative

a'''(n-1) is a''(n-1) - a''(n-2) or the closest available third-order discrete derivative

As a predictor makes use of samples preceding the sample that is predicted, it can only be

used when enough samples are known. As each subframe in FLAC is coded completely

independently, the first few samples in each subframe cannot be predicted. Therefore, a

number of so-called warm-up samples equal to the predictor order is stored. These are

stored unencoded, bypassing the predictor and residual coding stage. See section on

Constant subframe on how samples are stored unencoded. The table below defines how a

fixed predictor subframe appears in the bitstream

Data Description

s(n) Unencoded warm-up samples (n = subframe's bits-per-sample *

predictor order).

Coded

residual

Encoded residual

Table 21

As the fixed predictors are specified, they do not have to be stored. The fixed predictor

order, which is stored in the subframe header, specifies which predictor is used.

To encode a signal with a fixed predictor, each sample has the corresponding prediction

subtracted and sent to the residual coder. To decode a signal with a fixed predictor, the

residual is decoded, and then the prediction can be added for each sample. This means that

decoding MUST be a sequential process within a subframe, as for each sample, enough fully

decoded previous samples are needed to calculate the prediction.

For fixed predictor order 0, the prediction is always 0, thus each residual sample is equal to

its corresponding input or decoded sample. The difference between a fixed predictor with

order 0 and a verbatim subframe, is that a verbatim subframe stores all samples

unencoded, while a fixed predictor with order 0 has all its samples processed by the

residual coder.

The first order fixed predictor is comparable to how DPCM encoding works, as the resulting

residual sample is the difference between the corresponding sample and the sample before

it. The higher order fixed predictors can be understood as polynomials fitted to the previous

samples.

•

•

•

•

9.2.6. Linear predictor subframe

Whereas fixed predictors are well suited for simple signals, using a (non-fixed) linear

predictor on more complex signals can improve compression by making the residual

samples even smaller. There is a certain trade-off however, as storing the predictor

coefficients takes up space as well.

In the FLAC format, a predictor is defined by up to 32 predictor coefficients and a shift. To

form a prediction, each coefficient is multiplied with its corresponding past sample, the

results are summed and this sum is then shifted. To encode a signal with a linear predictor,

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 32

each sample has the corresponding prediction subtracted and sent to the residual coder. To

decode a signal with a linear predictor, the residual is decoded, and then the prediction can

be added for each sample. This means that decoding MUST be a sequential process within a

subframe, as for each sample, enough decoded samples are needed to calculate the

prediction.

The table below defines how a linear predictor subframe appears in the bitstream

Data Description

s(n) Unencoded warm-up samples (n = subframe's bits-per-sample * lpc

order).

u(4) (Predictor coefficient precision in bits)-1 (NOTE: 0b1111 is invalid).

s(5) Prediction right shift needed in bits.

s(n) Unencoded predictor coefficients (n = predictor coefficient precision *

lpc order).

Coded

residual

Encoded residual

Table 22

See section on Constant subframe on how the warm-up samples are stored unencoded. The

unencoded predictor coefficients are stored the same way as the warm-up samples, but the

number of bits needed for each coefficient is defined by the predictor coefficient precision.

While the prediction right shift is signed two's complement, this number MUST NOT be

negative, see section past changes for an explanation why this is.

Please note that the order in which the predictor coefficients appear in the bitstream

corresponds to which past sample they belong. In other words, the order of the predictor

coefficients is opposite to the chronological order of the samples. So, the first predictor

coefficient has to be multiplied with the sample directly before the sample that is being

predicted, the second predictor coefficient has to be multiplied with the sample before that

etc.

9.2.7. Coded residual

The first two bits in a coded residual indicate which coding method is used. See the table

below

Value Description

0b00 partitioned Rice code with 4-bit parameters

0b01 partitioned Rice code with 5-bit parameters

0b10 - 0b11 reserved

Table 23

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 33

Both defined coding methods work the same way, but differ in the number of bits used for

Rice parameters. The 4 bits that directly follow the coding method bits form the partition

order, which is an unsigned number. The rest of the coded residual consists of 2^(partition

order) partitions. For example, if the 4 bits are 0b1000, the partition order is 8 and the

residual is split up into 2^8 = 256 partitions.

Each partition contains a certain amount of residual samples. The number of residual

samples in the first partition is equal to (block size >> partition order) - predictor order, i.e.

the block size divided by the number of partitions minus the predictor order. In all other

partitions the number of residual samples is equal to (block size >> partition order).

The partition order MUST be so that the block size is evenly divisible by the number of

partitions. This means for example that for all odd block sizes, only partition order 0 is

allowed. The partition order also MUST be so that the (block size >> partition order) is

larger than the predictor order. This means for example that with a block size of 4096 and a

predictor order of 4, partition order cannot be larger than 9.

Each partition starts with a parameter. If the coded residual of a subframe is one with 4-bit

Rice parameters (see table at the start of this section), the first 4 bits of each partition are

either a Rice parameter or an escape code. These 4 bits indicate an escape code if they are

0b1111, otherwise they contain the Rice parameter as an unsigned number. If the coded

residual of the current subframe is one with 5-bit Rice parameters, the first 5 bits of each

partition indicate an escape code if they are 0b11111, otherwise they contain the Rice

parameter as an unsigned number as well.

9.2.7.1. Escaped partition

If an escape code was used, the partition does not contain a variable-length Rice coded

residual, but a fixed-length unencoded residual. Directly following the escape code are 5

bits containing the number of bits with which each residual sample is stored, as an

unsigned number. The residual samples themselves are stored signed two's complement.

For example, when a partition is escaped and each residual sample is stored with 3 bits, the

number -1 is represented as 0b111.

Note that it is possible that the number of bits with which each sample is stored is 0, which

means all residual samples in that partition have a value of 0 and that no bits are used to

store the samples. In that case, the partition contains nothing except the escape code and

0b00000.

9.2.7.2. Rice code

If a Rice parameter was provided for a certain partition, that partition contains a Rice coded

residual. The residual samples, which are signed numbers, are represented by unsigned

numbers in the Rice code. For positive numbers, the representation is the number doubled,

for negative numbers, the representation is the number multiplied by -2 and has 1

subtracted. This representation of signed numbers is also known as zigzag encoding and

the zigzag encoded residual is called the folded residual.

Each folded residual sample is then split in two parts, a most significant part and a least

significant part. The Rice parameter at the start of each partition determines where that

split lies: it is the number of bits in the least significant part. Each residual sample is then

stored by coding the most significant part unary followed by the least significant part

binary.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 34

For example, take a partition with Rice parameter 3 containing a folded residual sample

with 38 as value, which is 0b100110 in binary. The most significant part is 0b100 (4) and is

stored unary as 0b00001, the least significant part is 0b110 (6) and stored as is. The Rice

code word is thus 0b00001110. The Rice code words for all residual samples in a partition

are stored consecutively.

To decode a Rice code word, zero bits must be counted until encountering a one bit, after

which a number of bits given by the Rice parameter must be read. The count of zero bits is

shifted left by the Rice parameter (i.e. multiplied by 2 raised to the power Rice parameter)

and bitwise ORed with (i.e. added to) the read value. This is the folded residual value. An

even folded residual value is shifted right 1 bit (i.e. divided by two) to get the (unfolded)

residual value. An odd folded residual value is gets shifted right 1 bit and all bits flipped (1

added to and divided by -2) to get the (unfolded) residual value, subject to negative

numbers being signed two's complement on the decoding machine.

Appendix examples shows decoding of a complete coded residual.

9.2.7.3. Residual sample value limit

All residual samples values MUST be representable in the range offered by a 32-bit integer,

signed one's complement. Equivalently, all residual sample values MUST fall in the range

offered by a 32-bit integer signed two's complement excluding the most negative possible

value of that range. This means residual sample values MUST NOT have an absolute value

equal to, or larger then, 2 to the power 31. A FLAC encoder MUST make sure of this. If a

FLAC encoder is, for a certain subframe, unable to find a suitable predictor of which all

residual samples fall within said range, it MUST default to writing a verbatim subframe. The

appendix numerical considerations explains in which circumstances residual samples are

already implicitly representable in said range and thus an additional check is not needed.

The reason for this limit is to ensure that decoders can use 32-bit integers when processing

residuals, simplifying decoding. The reason the most negative value of a 32-bit int signed

two's complement is specifically excluded is to prevent decoders from having to implement

specific handling of that value, as it cannot be negated within a 32-bit signed int, and most

library routines calculating an absolute value have undefined behavior on processing that

value.

9.3. Frame footer

Following the last subframe is the frame footer. If the last subframe is not byte aligned (i.e.

the number of bits required to store all subframes put together is not divisible by 8), zero

bits are added until byte alignment is reached. Following this is a 16-bit CRC, initialized with

0, with polynomial x^16 + x^15 + x^2 + x^0. This CRC covers the whole frame excluding

the 16-bit CRC, including the sync code.

10. Container mappings

The FLAC format can be used without any container as the FLAC format already provides for

a very thin transport layer. However, the functionality of this transport is rather limited, and

to be able to combine FLAC audio with video, it needs to be encapsulated by a more

capable container. This presents a problem: the transport layer provided by the FLAC

format mixes data that belongs to the encoded data (like block size and sample rate) with

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 35

data that belongs to the transport (like checksum and timecode). The choice was made to

encapsulate FLAC frames as they are, which means some data will be duplicated and

potentially deviating between the FLAC frames and the encapsulating container.

As FLAC frames are completely independent of each other, container format features

handling dependencies do not need to be used. For example, all FLAC frames embedded in

Matroska are marked as keyframes when they are stored in a SimpleBlock and tracks in an

MP4 file containing only FLAC frames do not need a sync sample box.

10.1. Ogg mapping

The Ogg container format is defined in . The first packet of a logical bitstream

carrying FLAC data is structured according to the following table

Data Description

5 bytes Bytes 0x7F 0x46 0x4C 0x41 0x43 (as also defined by)

2 bytes Version number of the FLAC-in-Ogg mapping. These bytes are 0x01 0x00,

meaning version 1.0 of the mapping.

2 bytes Number of header packets (excluding the first header packet) as an unsigned

number coded big-endian.

4 bytes The fLaC signature

4 bytes A metadata block header for the streaminfo block

34

bytes

A streaminfo metadata block

Table 24

The number of header packets MAY be 0, which means the number of packets that follow is

unknown. This first packet MUST NOT share a Ogg page with any other packets. This means

the first page of an logical stream of FLAC-in-Ogg is always 79 bytes.

Following the first packet are one or more header packets, each of which contains a single

metadata block. The first of these packets SHOULD be a vorbis comment metadata block,

for historic reasons. This is contrary to unencapsulated FLAC streams, where the order of

metadata blocks is not important except for the streaminfo block and where a vorbis

comment metadata block is optional.

Following the header packets are audio packets. Each audio packet contains a single FLAC

frame. The first audio packet MUST start on a new Ogg page, i.e. the last metadata block

MUST finish its page before any audio packets are encapsulated.

The granule position of all pages containing header packets MUST be 0, for pages

containing audio packets the granule position is the number of the last sample contained by

the last completed packet in the frame. The sample numbering considers inter-channel

samples. If a page contains no packet end (e.g. when page only contains the start of a large

packet, which continues on the next page) then the granule position is set to the maximum

value possible i.e. 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF.

[RFC3533]

[RFC5334]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 36

The granule position of the first audio data page with a completed packet MAY be larger

than the number of samples contained in packets that complete on that page. In other

words, the apparent sample number of the first sample in the stream following from the

granule position and the audio data MAY be larger than 0. This allows for example a server

to cast a live stream to several clients which joined at different moments, without rewriting

the granule position for each client.

If an audio stream is encoded where audio properties (sample rate, number of channels or

bit depth) change at some point in the stream, this should be dealt with by finishing

encoding of the current Ogg stream and starting a new Ogg stream, concatenated to the

previous one. This is called chaining in Ogg. See the Ogg specification for

details.

[RFC3533]

10.2. Matroska mapping

The Matroska container format is defined in . The codec ID (EBML

path \Segment\Tracks\TrackEntry\CodecID) assigned to signal tracks carrying FLAC data is

A_FLAC in ASCII. All FLAC data before the first audio frame (i.e. the fLaC ASCII signature and

all metadata blocks) is stored as CodecPrivate data (EBML path

\Segment\Tracks\TrackEntry\CodecPrivate).

Each FLAC frame (including all of its subframes) is treated as a single frame in the Matroska

context.

If an audio stream is encoded where audio properties (sample rate, number of channels or

bit depth) change at some point in the stream, this should be dealt with a by finishing the

current Matroska segment and starting a new one with the new properties.

[I-D.ietf-cellar-matroska]

10.3. ISO Base Media File Format (MP4) mapping

The full encapsulation definition of FLAC audio in MP4 files was deemed too extensive to

include in this document. A definition document can be found at https://github.com/xiph/

flac/blob/master/doc/isoflac.txt The definitions document is summarized here.

The sample entry code is 'fLaC'. The channelcount and samplesize fields in the sample

entry follow from the values as found in the FLAC stream. The samplerate field can be

different, because FLAC can carry audio with much higher sample rates than can be coded

for in the sample entry. When possible, the samplerate field should contain the sample rate

as found in the FLAC stream, shifted left by 16 bits to get the 16.16 fixed point

representation of the samplerate field. When the FLAC stream contains a sample rate

higher than can be coded, the samplerate field contains the greatest expressible regular

division of the sample rate, e.g. 48000 for sample rates of 96kHz and 192kHz or 44100 for

a sample rate of 88200Hz. When the FLAC stream contain audio with an unusual sample

rate that has no regular division, the maximum value of 65535.0 Hz is used. As FLAC

streams with a high sample rate are common, a parser or decoder MUST read the value

from the FLAC streaminfo metadata block or a frame header to determine the actual

sample rate. The sample entry contains one 'FLAC specific box' with code 'dfLa'.

The FLAC specific box extends FullBox, with version number 0 and all flags set to 0, and

contains all FLAC data before the first audio frame but fLaC ASCII signature (i.e. all

metadata blocks).

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 37

https://github.com/xiph/flac/blob/master/doc/isoflac.txt
https://github.com/xiph/flac/blob/master/doc/isoflac.txt

If an audio stream is encoded where audio properties (sample rate, number of channels or

bit depth) change at some point in the stream, this MUST be dealt in a MP4 generic manner

e.g. with several stsd atoms and different sample-description-index values in the stsc

atom.

Each FLAC frame is a single sample in the context of MP4 files.

11. Implementation status

This section records the status of known implementations of the FLAC format, and is based

on a proposal described in . Please note that the listing of any individual

implementation here does not imply endorsement by the IETF. Furthermore, no effort has

been spent to verify the information presented here that was supplied by IETF contributors.

This is not intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that other implementations

may exist.

A reference encoder and decoder implementation of the FLAC format exists, known as

libFLAC, maintained by Xiph.Org. It can be found at https://xiph.org/flac/ Note that while all

libFLAC components are licensed under 3-clause BSD, the flac and metaflac command line

tools often supplied together with libFLAC are licensed under GPL.

Another completely independent implementation of both encoder and decoder of the FLAC

format is available in libavcodec, maintained by FFmpeg, licensed under LGPL 2.1 or later. It

can be found at https://ffmpeg.org/

A list of other implementations and an overview of which parts of the format they

implement can be found here: https://github.com/ietf-wg-cellar/flac-specification/wiki/

Implementations

[RFC7942]

12. Security Considerations

Like any other codec (such as), FLAC should not be used with insecure ciphers or

cipher modes that are vulnerable to known plaintext attacks. Some of the header bits as

well as the padding are easily predictable.

Implementations of the FLAC codec need to take appropriate security considerations into

account, as outlined in . It is extremely important for the decoder to be robust

against malformed payloads. Payloads that do not conform to this specification

cause the decoder to overrun its allocated memory or to take an excessive amount of

resources to decode. An overrun in allocated memory could lead to arbitrary code execution

by an attacker. The same applies to the encoder, even though problems in encoders are

typically rarer. Malformed audio streams cause the encoder to misbehave

because this would allow an attacker to attack transcoding gateways.

As with all compression algorithms, both encoding and decoding can produce an output

much larger than the input. In case of decoding, the most extreme possible case of this is a

frame with eight constant subframes of block size 65535 and coding for 32-bit PCM. This

frame is only 49 byte in size, but codes for more than 2 megabyte of uncompressed PCM

data. For encoding, it is possible to have an even larger size increase, although such

behavior is generally considered faulty. This happens if the encoder chooses a rice

parameter that does not fit with the residual that has to be encoded. In such a case, very

[RFC6716]

[RFC4732]

MUST NOT

MUST NOT

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 38

https://xiph.org/flac/
https://ffmpeg.org/
https://github.com/ietf-wg-cellar/flac-specification/wiki/Implementations
https://github.com/ietf-wg-cellar/flac-specification/wiki/Implementations

long unary coded symbols can appear, in the most extreme case more than 4 gigabyte per

sample. Decoder and encoder implementors are advised to take precautions to prevent

excessive resource utilization in such cases.

Where metadata is handled, implementors are advised to either thoroughly test handling of

extreme cases or impose reasonable limits beyond the limits of this specification document.

For example, a single Vorbis comment metadata block can contain millions of valid fields. It

is unlikely such a limit is ever reached except in a potentially malicious file. Likewise the

media type and description of a picture metadata block can be millions of characters long,

despite there being no reasonable use of such contents. One possible use case for very

long character strings is in lyrics, which can be stored in Vorbis comment metadata block

fields.

Various kinds of metadata blocks contain length fields or fields counts. While reading a

block following these lengths or counts, a decoder MUST make sure higher-level lengths or

counts (most importantly the length field of the metadata block itself) are not exceeded. As

some of these length fields code string lengths, memory for which must be allocated,

parsers SHOULD first verify that a block is valid before allocating memory based on its

contents, except when explicitly instructed to salvage data from a malformed file.

Metadata blocks can also contain references, e.g. the picture metadata block can contain a

URI. Applications MUST obtain explicit user approval to retrieve resources via remote

protocols and to retrieve local resources not located in the same directory as the FLAC file

being processed.

Seeking in a FLAC stream that is not in a container relies on the coded number in frame

headers and optionally a seektable metadata block. Parsers MUST employ thorough sanity

checks on whether a found coded number or seekpoint is at all possible. Without these

checks, seeking might get stuck in an infinite loop when numbers in frames are non-

consecutive or otherwise invalid, which could be used in denial of service attacks.

Implementors are advised to employ fuzz testing combined with different sanitizers on FLAC

decoders to find security problems. Ignoring the results of CRC checks improves the

efficiency of decoder fuzz testing.

See the FLAC decoder testbench for a non-exhaustive list of FLAC files with extreme

configurations which lead to crashes or reboots on some known implementations. Besides

providing a starting point for security testing, this set of files can also be used for testing

conformance with this specification.

13. IANA Considerations

In accordance with the procedures set forth in , this document registers one new

media type, "audio/flac", as defined in the following section.

[RFC6838]

13.1. Media type registration

The following information serves as the registration form for the "audio/flac" media type.

This media type is applicable for FLAC audio packaged in its native container. FLAC audio

packaged in another container will take on the media type of its container, for example

audio/ogg when packaged in an Ogg container or video/mp4 when packaged in a MP4

container alongside a video track.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 39

https://github.com/ietf-wg-cellar/flac-test-files

 Type name: audio

 Subtype name: flac

 Required parameters: none

 Optional parameters: none

 Encoding considerations: as per THISRFC

 Security considerations: see the security considerations in section 12 of

THISRFC

 Interoperability considerations: see the descriptions of past format

changes in Appendix B of THISRFC

 Published specification: THISRFC

 Applications that use this media type: ffmpeg, apache, firefox

 Fragment identifier considerations: none

 Additional information:

 Deprecated alias names for this type: audio/x-flac

 Magic number(s): fLaC

 File extension(s): flac

 Macintosh file type code(s): none

 Person & email address to contact for further information: IETF CELLAR WG

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: IETF CELLAR WG

 Change controller: Internet Engineering Task Force (mailto:iesg@ietf.org)

 Provisional registration? (standards tree only): NO

14. Acknowledgments

FLAC owes much to the many people who have advanced the audio compression field so

freely. For instance:

A. J. Robinson for his work on Shorten; his paper (see) is a good

starting point on some of the basic methods used by FLAC. FLAC trivially extends and

improves the fixed predictors, LPC coefficient quantization, and Rice coding used in

Shorten.

• [robinson-tr156]

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 40

[RFC2119]

[RFC3629]

[RFC8174]

[Durbin]

[FIR]

[HPL-1999-144]

[I-D.ietf-cellar-matroska]

[IEC.60908.1999]

[ISRC-handbook]

[LinearPrediction]

15. Normative References

, ,

, , , March 1997,

.

, , ,

, , November 2003,

.

, ,

, , , May 2017,

.

16. Informative References

, , ,

December 1959, .

,

.

 and , ,

, November 1999,

.

, , and ,

, ,

, 11 February 2023,

.

,

, ,

1999.

,

, 2021,

.

,

.

S. W. Golomb and Robert F. Rice; their universal codes are used by FLAC's entropy

coder, see .

N. Levinson and J. Durbin; the FLAC reference encoder (see implementation status) uses

an algorithm developed and refined by them for determining the LPC coefficients from

the autocorrelation coefficients, see .

And of course, Claude Shannon, see .

The FLAC format, the FLAC reference implementation and this document were originally

developed by Josh Coalson. While many others have contributed since, this original effort is

deeply appreciated.

•

[Rice]

•

[Durbin]

• [Shannon]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels"

BCP 14 RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-

editor.org/info/rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC

3629 DOI 10.17487/RFC3629 <https://www.rfc-editor.org/

info/rfc3629>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"

BCP 14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-

editor.org/info/rfc8174>

Durbin, J. "The Fitting of Time-Series Models" DOI 10.2307/1401322

<https://www.jstor.org/stable/1401322>

"Finite impulse response - Wikipedia" <https://en.wikipedia.org/wiki/

Finite_impulse_response>

Hans, M. RW. Schafer "Lossless Compression of Digital Audio" DOI

10.1109/79.939834 <https://www.hpl.hp.com/techreports/

1999/HPL-1999-144.pdf>

Lhomme, S. Bunkus, M. D. Rice "Matroska Media

Container Format Specifications" Work in Progress Internet-Draft, draft-ietf-

cellar-matroska-15 <https://datatracker.ietf.org/doc/

html/draft-ietf-cellar-matroska-15>

International Electrotechnical Commission "Audio recording - Compact

disc digital audio system" IEC International standard 60908 second edition

International ISRC Registration Authority "International Standard

Recording Code (ISRC) Handbook, 4th edition" <https://www.ifpi.org/

isrc_handbook/>

"Linear prediction - Wikipedia" <https://en.wikipedia.org/wiki/

Linear_prediction>

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 41

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.jstor.org/stable/1401322
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://www.hpl.hp.com/techreports/1999/HPL-1999-144.pdf
https://www.hpl.hp.com/techreports/1999/HPL-1999-144.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-cellar-matroska-15
https://datatracker.ietf.org/doc/html/draft-ietf-cellar-matroska-15
https://www.ifpi.org/isrc_handbook/
https://www.ifpi.org/isrc_handbook/
https://en.wikipedia.org/wiki/Linear_prediction
https://en.wikipedia.org/wiki/Linear_prediction

[RFC3533]

[RFC4732]

[RFC5334]

[RFC6716]

[RFC6838]

[RFC7942]

[Rice]

[Shannon]

[VarLengthCode]

[Vorbis]

[robinson-tr156]

, , ,

, May 2003, .

, , and ,

, , , December 2006,

.

, , and , ,

, , September 2008,

.

, , and , ,

, , September 2012,

.

, , and ,

, , , ,

January 2013, .

 and ,

, , ,

, July 2016, .

 and ,

,

, December 1971,

.

, ,

, January 1949,

.

,

.

,

, .

,

, December 1994,

.

Pfeiffer, S. "The Ogg Encapsulation Format Version 0" RFC 3533 DOI

10.17487/RFC3533 <https://www.rfc-editor.org/info/rfc3533>

Handley, M., Ed. Rescorla, E., Ed. IAB "Internet Denial-of-Service

Considerations" RFC 4732 DOI 10.17487/RFC4732

<https://www.rfc-editor.org/info/rfc4732>

Goncalves, I. Pfeiffer, S. C. Montgomery "Ogg Media Types" RFC

5334 DOI 10.17487/RFC5334 <https://www.rfc-

editor.org/info/rfc5334>

Valin, JM. Vos, K. T. Terriberry "Definition of the Opus Audio Codec"

RFC 6716 DOI 10.17487/RFC6716 <https://www.rfc-

editor.org/info/rfc6716>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and

Registration Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838

<https://www.rfc-editor.org/info/rfc6838>

Sheffer, Y. A. Farrel "Improving Awareness of Running Code: The

Implementation Status Section" BCP 205 RFC 7942 DOI 10.17487/

RFC7942 <https://www.rfc-editor.org/info/rfc7942>

Rice, RF. JR. Plaunt "Adaptive Variable-Length Coding for Efficient

Compression of Spacecraft Television Data" DOI 10.1109/TCOM.

1971.1090789 <https://ieeexplore.ieee.org/document/

1090789>

Shannon, CE. "Communication in the Presence of Noise" DOI 10.1109/

JRPROC.1949.232969 <https://ieeexplore.ieee.org/

document/1697831>

"Variable-length code - Wikipedia" <https://en.wikipedia.org/wiki/

Variable-length_code>

Xiph.Org "Ogg Vorbis I format specification: comment field and header

specification" <https://xiph.org/vorbis/doc/v-comment.html>

Robinson, T. "SHORTEN: Simple lossless and near-lossless waveform

compression" <https://mi.eng.cam.ac.uk/reports/

abstracts/robinson_tr156.html>

Appendix A. Numerical considerations

In order to maintain lossless behavior, all arithmetic used in encoding and decoding sample

values MUST be done with integer data types to eliminate the possibility of introducing

rounding errors associated with floating-point arithmetic. Use of floating-point

representations in analysis (e.g. finding a good predictor or Rice parameter) is not a

concern, as long as the process of using the found predictor and Rice parameter to encode

audio samples is implemented with only integer math.

Furthermore, the possibility of integer overflow can be eliminated by using large enough

data types. Choosing a 64-bit signed data type for all arithmetic involving sample values

would make sure the possibility for overflow is eliminated, but usually smaller data types

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 42

https://www.rfc-editor.org/info/rfc3533
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc5334
https://www.rfc-editor.org/info/rfc5334
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7942
https://ieeexplore.ieee.org/document/1090789
https://ieeexplore.ieee.org/document/1090789
https://ieeexplore.ieee.org/document/1697831
https://ieeexplore.ieee.org/document/1697831
https://en.wikipedia.org/wiki/Variable-length_code
https://en.wikipedia.org/wiki/Variable-length_code
https://xiph.org/vorbis/doc/v-comment.html
https://mi.eng.cam.ac.uk/reports/abstracts/robinson_tr156.html
https://mi.eng.cam.ac.uk/reports/abstracts/robinson_tr156.html

are chosen for increased performance, especially in embedded devices. This section

provides guidelines for choosing the right data type in each step of encoding and decoding

FLAC files.

A.1. Determining necessary data type size

To find the smallest data type size that is guaranteed not to overflow for a certain sequence

of arithmetic operations, the combination of values producing the largest possible result

should be considered.

If for example two 16-bit signed integers are added, the largest possible result forms if both

values are the largest number that can be represented with a 16-bit signed integer. To store

the result, an signed integer data type with at least 17 bits is needed. Similarly, when

adding 4 of these values, 18 bits are needed, when adding 8, 19 bits are needed etc. In

general, the number of bits necessary when adding numbers together is increased by the

log base 2 of the number of values rounded up to the nearest integer. So, when adding 18

unknown values stored in 8 bit signed integers, we need a signed integer data type of at

least 13 bits to store the result, as the log base 2 of 18 rounded up is 5.

In case of multiplication, the number of bits needed for the result is the size of the first

variable plus the size of the second variable, but counting only one sign bit if working with

signed data types. If for example a 16-bit signed integer is multiplied by a 16-bit signed

integer, the result needs at least 31 bits to store without overflowing.

A.2. Stereo decorrelation

When stereo decorrelation is used, the side channel will have one extra bit of bit depth, see

section on Interchannel Decorrelation.

This means that while 16-bit signed integers have sufficient range to store samples from a

fully decoded FLAC frame with a bit depth of 16 bit, the decoding of a side subframe in such

a file will need a data type with at least 17 bit to store decoded subframe samples before

undoing stereo decorrelation.

Most FLAC decoders store decoded (subframe) samples as 32-bit values, which is sufficient

for files with bit depths up to (and including) 31 bit.

A.3. Prediction

A prediction (which is used to calculate the residual on encoding or added to the residual to

calculate the sample value on decoding) is formed by multiplying and summing preceding

sample values. In order to eliminate the possibility of integer overflow, the combination of

preceding sample values and predictor coefficients producing the largest possible value

should be considered.

To determine the size of the data type needed to calculate either a residual sample (on

encoding) or an audio sample value (on decoding) in a fixed predictor subframe, the

maximal possible value for these is calculated as described in the section determining

necessary data type size in the following table. For example: if a frame codes for 16-bit

audio and has some form of stereo decorrelation, the subframe coding for the side channel

would need 16+1+3 bits if a third order fixed predictor is used.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 43

Order Calculation of residual Sample values
summed

Extra
bits

0 a(n) 1 0

1 a(n) - a(n-1) 2 1

2 a(n) - 2 * a(n-1) + a(n-2) 4 2

3 a(n) - 3 * a(n-1) + 3 * a(n-2) - a(n-3) 8 3

4 a(n) - 4 * a(n-1) + 6 * a(n-2) - 4 * a(n-3)

+ a(n-4)

16 4

Table 25

Where

n is the number of the sample being predicted

a(n) is the sample being predicted

a(n-1) is the sample before the one being predicted, a(n-2) is the sample before that

etc.

For subframes with a linear predictor, calculation is a little more complicated. Each

prediction is a sum of several multiplications. Each of these multiply a sample value with a

predictor coefficient. The extra bits needed can be calculated by adding the predictor

coefficient precision (in bits) to the bit depth of the audio samples. As both are signed

numbers and only one 'sign bit' is necessary, 1 bit can be subtracted. To account for the

summing of these multiplications, the log base 2 of the predictor order rounded up is

added.

For example, if the sample bit depth of the source is 24, the current subframe encodes a

side channel (see the section on interchannel decorrelation), the predictor order is 12 and

the predictor coefficient precision is 15 bits, the minimum required size of the used signed

integer data type is at least (24 + 1) + (15 - 1) + ceil(log2(12)) = 43 bits. As another

example, with a side-channel subframe bit depth of 16, a predictor order of 8 and a

predictor coefficient precision of 12 bits, the minimum required size of the used signed

integer data type is (16 + 1) + (12 - 1) + ceil(log2(8)) = 31 bits.

•

•

•

A.4. Residual

As stated in the section coded residual, an encoder must make sure residual samples are

representable by a 32-bit integer, signed two's complement, excluding the most negative

value. Continuing as in the previous section, it is possible to calculate when residual

samples already implicitly fit and when an additional check is needed. This implicit fit is

achieved when residuals would fit a theoretical 31-bit signed int, as that satisfies both

mentioned criteria.

For the residual of a fixed predictor, the maximum size of a residual was already calculated

in the previous section. However, for a linear predictor, the prediction is shifted right by a

certain amount. The number of bits needed for the residual is the number of bits calculated

in the previous section, reduced by the prediction right shift, increased by one bit to

account for the subtraction of the prediction from the current sample on encoding.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 44

Taking the last example of the previous section, where 31 bits were needed for the

prediction, the required data type size for the residual samples in case of a right shift of 10

bits would be 31 - 10 + 1 = 22 bits, which means it is not necessary to check whether the

residuals fit a 32-bit signed integer.

As another example, when encoding 32-bit PCM with fixed predictors, all predictor orders

must be checked. While the 0-order fixed predictor is guaranteed to have residuals that fit a

32-bit signed int, it might produce a residual being the most negative representable value

of that 32-bit signed int.

Note that on decoding, while the residual samples are limited to the aforementioned range,

the predictions are not. This means that while the decoding of the residual samples can

happen fully in 32-bit signed integers, decoders must be sure to execute the addition of

each residual sample to its accompanying prediction with a wide enough signed integer

data type like on encoding.

A.5. Rice coding

When folding (i.e. zig-zag encoding) the residual sample values, no extra bits are needed

when the absolute value of each residual sample is first stored in an unsigned data type of

the size of the last step, then doubled and then has one subtracted depending on whether

the residual sample was positive or negative. Many implementations however choose to

require one extra bit of data type size so zig-zag encoding can happen in one step and

without a cast instead of the procedure described in the previous sentence.

Appendix B. Past format changes

This informational appendix documents what changes were made to the FLAC format over

the years. This information might be of use when encountering FLAC files that were made

with software following the format as it was before the changes documented in this

appendix.

The FLAC format was first specified in December 2000 and the bitstream format was

considered frozen with the release of FLAC (the reference encoder/decoder) 1.0 in July

2001. Only changes made since this first stable release are considered in this appendix.

Changes made to the FLAC streamble subset definition (see section streamable subset) are

not considered.

B.1. Addition of block size strategy flag

Perhaps the largest backwards incompatible change to the specification was published in

July 2007. Before this change, variable block size streams were not explicitly marked as

such by a flag bit in the frame header. A decoder had two ways to detect a variable block

size stream, either by comparing the minimum and maximum block size in the

STREAMINFO metadata block (which are equal in case of a fixed block size stream), or, if a

decoder did not receive a STREAMINFO metadata block, by detecting a change of block size

during a stream, which could in theory not happen at all. As the meaning of the coded

number in the frame header depends on whether or not a stream is variable block size, this

presented a problem: the meaning of the coded number could not be reliably determined.

To fix this problem, one of the reserved bits was changed to be used as a block size

strategy flag. See also the section frame header.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 45

Along with the addition of a new flag, the meaning of the block size bits was subtly

changed. Initially, block size bits 0b0001-0b0101 and 0b1000-0b1111 could only be used

for fixed block size streams, while 0b0110 and 0b0111 could be used for both fixed block

size and variable block size streams. With the change these restrictions were lifted and

0b0001-0b1111 are now used for both variable block size and fixed block size streams.

B.2. Restriction of encoded residual samples

Another change to the specification was deemed necessary during standardization by the

CELLAR working group of the IETF. As specified in section coded residual a limit is imposed

on residual samples. This limit was not specified prior to the IETF standardization effort.

However, as far as was known to the working group, no FLAC encoder at that time

produced FLAC files containing residual samples exceeding this limit. This is mostly because

it is very unlikely to encounter residual samples exceeding this limit when encoding 24-bit

PCM, and encoding of PCM with higher bit depths was not yet implemented in any known

encoder. In fact, these FLAC encoders would produce corrupt files upon being triggered to

produce such residual samples and it is unlikely any non-experimental encoder would ever

do so, even when presented with crafted material. Therefore, it was not expected existing

implementation would be rendered non-compliant by this change.

B.3. Addition of 5-bit Rice parameter

One significant addition to the format was the residual coding method using a 5-bit Rice

parameter. Prior to publication of this addition in July 2007, there was only one residual

coding method specified, a partitioned Rice code with a 4-bit Rice parameter. The range

offered by this proved too small when encoding 24-bit PCM, therefore a second residual

coding method was specified identical to the first but with a 5-bit Rice parameter.

B.4. Restriction of LPC shift to non-negative values

As stated in section linear predictor subframe, the predictor right shift is a number signed

two's complement, which MUST NOT be negative. This is because right shifting a number by

a negative amount is undefined behavior in the C programming language standard. The

intended behavior was that a positive number would be a right shift and a negative number

a left shift. The FLAC reference encoder was changed in 2007 to not generate LPC

subframes with a negative predictor right shift, as it turned out that the use of such

subframes would only very rarely provide any benefit and the decoders that were already

widely in use at that point were not able to handle such subframes.

Appendix C. Interoperability considerations

As documented in appendix past format changes, there have been some changes and

additions to the FLAC format. Additionally, implementation of certain features of the FLAC

format took many years, meaning early decoder implementations could not be tested

against files with these features. Finally, many lower-quality FLAC decoders only implement

enough features required for playback of the most common FLAC files.

This appendix provides some considerations for encoder implementations aiming to create

highly compatible files. As this topic is one that might change after this document is

finished, consult this web page for more up-to-date information.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 46

https://github.com/ietf-wg-cellar/flac-specification/wiki/Interoperability-considerations

C.1. Features outside of streamable subset

As described in section streamable subset, FLAC specifies a subset of its capabilities as the

FLAC streamable subset. Certain decoders may choose to only decode FLAC files

conforming to the limitations imposed by the streamable subset. Therefore, maximum

compatibility with decoders is achieved when the limitations of the FLAC streamable subset

are followed when creating FLAC files.

C.2. Variable block size

Because it is often difficult to find the optimal arrangement of block sizes for maximum

compression, most encoders choose to create files with a fixed block size. Because of this

many decoder implementations receive minimal use when handling variable block size

streams, and this can reveal bugs, or reveal that implementations do not decode them at

all. Furthermore, as is explained in section addition of block size strategy flag, there have

been some changes to the way variable block size streams were encoded. Because of this,

maximum compatibility with decoders is achieved when FLAC files are created using fixed

block size streams.

C.3. 5-bit Rice parameter

As the addition of the 5-bit Rice parameter as described in section addition of 5-bit Rice

parameter was quite a few years after the FLAC format was first introduced, some early

decoders might not be able to decode files containing such Rice parameters. The

introduction of this was specifically aimed at improving compression of 24-bit PCM audio

and compression of 16-bit PCM audio only rarely benefits from using a 5-bit Rice

parameters. Therefore, maximum compatibility with decoders is achieved when FLAC files

containing audio with a bit depth of 16 bits or lower are created without any use of 5-bit

Rice parameters.

C.4. Rice escape code

Escapes Rice partitions are only seldom used as it turned out their use provides only very

small compression improvement. As many encoders therefore do not use these by default

or are not capable of producing them at all, it is likely many decoder implementation are

not able to decode them correctly. Therefore, maximum compatibility with decoders is

achieved when FLAC files are created without any use of escaped Rice partitions.

C.5. Uncommon block size

For unknown reasons some decoders have chosen to support only common block sizes

except for the last block. Therefore, maximum compatibility with decoders is achieved

when creating FLAC files using common block sizes as listed in section block size bits for all

but the last block.

C.6. Uncommon bit depth

Most audio is stored in bit depths that are a whole number of bytes, e.g. 8, 16 or 24 bit.

There is however audio with different bit depths. A few examples:

DVD-Audio has the possibility to store 20 bit PCM audio •

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 47

DAT and DV can store 12 bit PCM audio

NICAM-728 samples at 14 bit, which is companded to 10 bit

8-bit µ-law can be losslessly converted to 14 bit (Linear) PCM

8-bit A-law can be losslessly converted to 13 bit (Linear) PCM

FLAC can store these bit depths directly, but because they are uncommon, some decoders

are not able to process the resulting files correctly. It is possible to store these formats in a

FLAC file with a more common bit depth without sacrificing compression by padding each

sample with zero bits to a bit depth that is a whole byte. FLAC will detect these wasted bits.

This transformation leaves no ambiguity in how it can be reversed and is thus lossless. See

section wasted bits per sample for details.

Therefore, maximum compatibility with decoders is achieved when FLAC files are created

by padding samples of such audio with zero bits to the bit depth that is the next whole

number of bytes.

Besides audio with a 'non-whole byte' bit depth, some decoder implementations have

chosen to only accept FLAC files coding for PCM audio with a bit depth of 16 bit. Many

implementations support bit depths up to 24 bit but no higher. Consult this web page for

more up-to-date information.

•

•

•

•

C.7. Multi-channel audio and uncommon sample rates

Many FLAC audio players are unable to render multi-channel audio or audio with an

uncommon sample rate. While this is not a concern specific to the FLAC format, it is of note

when requiring maximum compatibility with decoders. Unlike the previously mentioned

interoperability considerations, this is one that cannot be satisfied without sacrificing the

lossless nature of the FLAC format.

From a non-exhaustive inquiry, it seems that a non-negligible amount of players, among

those especially hardware players, does not support audio with 3 or more channels or

sample rates other than those considered common, see section sample rate bits.

For those players that do support and are able to render multi-channel audio, many do not

parse and use the WAVEFORMATEXTENSIBLE_CHANNEL_MASK tag (see section channel

mask). This too is a interoperability consideration that cannot be satisfied without

sacrificing the lossless nature of the FLAC format.

Appendix D. Examples

This informational appendix contains short example FLAC files which are decoded step by

step. These examples provide a more engaging way to understand the FLAC format than

the formal specification. The text explaining these examples assumes the reader has at

least cursorily read the specification and that the reader refers to the specification for

explanation of the terminology used. These examples mostly focus on the lay-out of several

metadata blocks and subframe types and the implications of certain aspects (for example

wasted bits and stereo decorrelation) on this lay-out.

The examples feature files generated by various FLAC encoders. These are presented in

hexadecimal or binary format, followed by tables and text referring to various features by

their starting bit positions in these representations. Each starting position (shortened to

'start' in the tables) is a hexadecimal byte position and a start bit within that byte,

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 48

https://github.com/ietf-wg-cellar/flac-specification/wiki/Interoperability-considerations

separated by a plus sign. Counts for these start at zero. For example, a feature starting at

the 3rd bit of the 17th byte is referred to as starting at 0x10+2. The files that are explored

in these examples can be found at https://github.com/ietf-wg-cellar/flac-specification.

All data in this appendix has been thoroughly verified. However, as this appendix is

informational, if any information here conflicts with statements in the formal specification,

the latter takes precedence.

D.1. Decoding example 1

This very short example FLAC file codes for PCM audio that has two channels, each

containing 1 sample. The focus of this example is on the essential parts of a FLAC file.

D.1.1. Example file 1 in hexadecimal representation

00000000: 664c 6143 8000 0022 1000 1000 fLaC..."....

0000000c: 0000 0f00 000f 0ac4 42f0 0000 B...

00000018: 0001 3e84 b418 07dc 6903 0758 ..>.....i..X

00000024: 6a3d ad1a 2e0f fff8 6918 0000 j=......i...

00000030: bf03 58fd 0312 8baa 9a ..X......

D.1.2. Example file 1 in binary representation

00000000: 01100110 01001100 01100001 01000011 fLaC

00000004: 10000000 00000000 00000000 00100010 ..."

00000008: 00010000 00000000 00010000 00000000

0000000c: 00000000 00000000 00001111 00000000

00000010: 00000000 00001111 00001010 11000100

00000014: 01000010 11110000 00000000 00000000 B...

00000018: 00000000 00000001 00111110 10000100 ..>.

0000001c: 10110100 00011000 00000111 11011100

00000020: 01101001 00000011 00000111 01011000 i..X

00000024: 01101010 00111101 10101101 00011010 j=..

00000028: 00101110 00001111 11111111 11111000

0000002c: 01101001 00011000 00000000 00000000 i...

00000030: 10111111 00000011 01011000 11111101 ..X.

00000034: 00000011 00010010 10001011 10101010

00000038: 10011010

D.1.3. Signature and streaminfo

The first 4 bytes of the file contain the fLaC file signature. Directly following it is a metadata

block. The signature and the first metadata block header are broken down in the following

table

Start Length Contents Description

0x00+0 4 byte 0x664C6143 fLaC

0x04+0 1 bit 0b1 Last metadata block

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 49

https://github.com/ietf-wg-cellar/flac-specification

Start Length Contents Description

0x04+1 7 bit 0b0000000 Streaminfo metadata block

0x05+0 3 byte 0x000022 Length 34 byte

Table 26

As the header indicates that this is the last metadata block, the position of the first audio

frame can now be calculated as the position of the first byte after the metadata block

header + the length of the block, i.e. 8+34 = 42 or 0x2a. As can be seen 0x2a indeed

contains the frame sync code for fixed block size streams, 0xfff8.

The streaminfo metadata block contents are broken down in the following table

Start Length Contents Description

0x08+0 2 byte 0x1000 Min. block size 4096

0x0a+0 2 byte 0x1000 Max. block size 4096

0x0c+0 3 byte 0x00000f Min. frame size 15 byte

0x0f+0 3 byte 0x00000f Max. frame size 15 byte

0x12+0 20 bit 0x0ac4, 0b0100 Sample rate 44100 hertz

0x14+4 3 bit 0b001 2 channels

0x14+7 5 bit 0b01111 Sample bit depth 16

0x15+4 36 bit 0b0000, 0x00000001 Total no. of samples 1

0x1a 16 byte (...) MD5 signature

Table 27

The minimum and maximum block size are both 4096. This was apparently the block size

the encoder planned to use, but as only 1 interchannel sample was provided, no frames

with 4096 samples are actually present in this file.

Note that anywhere a number of samples is mentioned (block size, total number of

samples, sample rate), interchannel samples are meant.

The MD5 sum (starting at 0x1a) is 0x3e84 b418 07dc 6903 0758 6a3d ad1a 2e0f. This will

be validated after decoding the samples.

D.1.4. Audio frames

The frame header starts at position 0x2a and is broken down in the following table.

Start Length Contents Description

0x2a+0 15 bit 0xff, 0b1111100 frame sync

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 50

Start Length Contents Description

0x2b+7 1 bit 0b0 block size strategy

0x2c+0 4 bit 0b0110 8-bit block size further down

0x2c+4 4 bit 0b1001 sample rate 44.1kHz

0x2d+0 4 bit 0b0001 stereo, no decorrelation

0x2d+4 3 bit 0b100 bit depth 16 bit

0x2d+7 1 bit 0b0 mandatory 0 bit

0x2e+0 1 byte 0x00 frame number 0

0x2f+0 1 byte 0x00 block size 1

0x30+0 1 byte 0xbf frame header CRC

Table 28

As the stream is a fixed block size stream, the number at 0x2e contains a frame number. As

the value is smaller than 128, only 1 byte is used for the encoding.

At byte 0x31 the subframe header of the first subframe starts, it is broken down in the

following table.

Start Length Contents Description

0x31+0 1 bit 0b0 mandatory 0 bit

0x31+1 6 bit 0b000001 verbatim subframe

0x31+7 1 bit 0b1 wasted bits present

0x32+0 2 bit 0b01 2 wasted bits

0x32+2 14 bit 0b011000, 0xfd 14-bit unencoded sample

Table 29

As the wasted bits flag is 1 in this subframe, an unary coded number follows. Starting at

0x32, we see 0b01, which unary codes for 1, meaning we have 2 wasted bits in this

subframe.

As this is a verbatim subframe, the subframe only contains unencoded sample values. With

a block size of 1, it contains only a single sample. The bit depth of the audio is 16 bit, but as

the subframe header signals 2 wasted bits, only 14 bits are stored. As no stereo

decorrelation is used, a bit depth increase for the side channel is not applicable. So, the

next 14 bit (starting at position 0x32+2) contain the unencoded sample coded big-endian,

signed two's complement. The value reads 0b011000 11111101, or 6397. This value needs

to be shifted left by 2 bits, to account for the wasted bits. The value is then 0b011000

11111101 00, or 25588.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 51

The second subframe starts at 0x34, it is broken down in the following table.

Start Length Contents Description

0x34+0 1 bit 0b0 mandatory 0 bit

0x34+1 6 bit 0b000001 verbatim subframe

0x34+7 1 bit 0b1 wasted bits present

0x35+0 4 bit 0b0001 4 wasted bits

0x35+4 12 bit 0b0010, 0x8b 12-bit unencoded sample

Table 30

Here the wasted bits flag is also one, but the unary coded number that follows it is 4 bit

long, indicating 4 wasted bits. This means the sample is stored in 12 bits. The sample value

is 0b0010 10001011, or 651. This value now has to be shifted left by 4 bits, i.e. 0b0010

10001011 0000 or 10416.

At this point, we would do stereo decorrelation if that was applicable.

As the last subframe ends byte-aligned, no padding bits follow it. The next 2 bytes, starting

at 0x38, contain the frame CRC. As this is the only frame in the file, the file ends with the

CRC.

To validate the MD5, we line up the samples interleaved, byte-aligned, little endian, signed

two's complement. The first sample, the value of which was 25588 translates to 0xf463, the

second sample had a value of 10416 which translates to 0xb028. When MD5 summing

0xf463b028, we get the MD5 sum found in the header, so decoding was lossless.

D.2. Decoding example 2

This FLAC file is larger than the first example, but still contains very little audio. The focus

of this example is on decoding a subframe with a fixed predictor and a coded residual, but it

also contains a very short seektable, Vorbis comment and padding metadata block.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 52

D.2.1. Example file 2 in hexadecimal representation

00000000: 664c 6143 0000 0022 0010 0010 fLaC..."....

0000000c: 0000 1700 0044 0ac4 42f0 0000 D..B...

00000018: 0013 d5b0 5649 75e9 8b8d 8b93 VIu.....

00000024: 0422 757b 8103 0300 0012 0000 ."u{........

00000030: 0000 0000 0000 0000 0000 0000

0000003c: 0000 0010 0400 003a 2000 0000 : ...

00000048: 7265 6665 7265 6e63 6520 6c69 reference li

00000054: 6246 4c41 4320 312e 332e 3320 bFLAC 1.3.3

00000060: 3230 3139 3038 3034 0100 0000 20190804....

0000006c: 0e00 0000 5449 544c 453d d7a9 TITLE=..

00000078: d79c d795 d79d 8100 0006 0000

00000084: 0000 0000 fff8 6998 000f 9912 i.....

00000090: 0867 0162 3d14 4299 8f5d f70d .g.b=.B..]..

0000009c: 6fe0 0c17 caeb 2100 0ee7 a77a o.....!....z

000000a8: 24a1 590c 1217 b603 097b 784f $.Y......{xO

000000b4: aa9a 33d2 85e0 70ad 5b1b 4851 ..3...p.[.HQ

000000c0: b401 0d99 d2cd 1a68 f1e6 b810 h....

000000cc: fff8 6918 0102 a402 c382 c40b ..i.........

000000d8: c14a 03ee 48dd 03b6 7c13 30 .J..H...|.0

D.2.2. Example file 2 in binary representation (only audio frames)

00000088: 11111111 11111000 01101001 10011000 ..i.

0000008c: 00000000 00001111 10011001 00010010

00000090: 00001000 01100111 00000001 01100010 .g.b

00000094: 00111101 00010100 01000010 10011001 =.B.

00000098: 10001111 01011101 11110111 00001101 .]..

0000009c: 01101111 11100000 00001100 00010111 o...

000000a0: 11001010 11101011 00100001 00000000 ..!.

000000a4: 00001110 11100111 10100111 01111010 ...z

000000a8: 00100100 10100001 01011001 00001100 $.Y.

000000ac: 00010010 00010111 10110110 00000011

000000b0: 00001001 01111011 01111000 01001111 .{xO

000000b4: 10101010 10011010 00110011 11010010 ..3.

000000b8: 10000101 11100000 01110000 10101101 ..p.

000000bc: 01011011 00011011 01001000 01010001 [.HQ

000000c0: 10110100 00000001 00001101 10011001

000000c4: 11010010 11001101 00011010 01101000 ...h

000000c8: 11110001 11100110 10111000 00010000

000000cc: 11111111 11111000 01101001 00011000 ..i.

000000d0: 00000001 00000010 10100100 00000010

000000d4: 11000011 10000010 11000100 00001011

000000d8: 11000001 01001010 00000011 11101110 .J..

000000dc: 01001000 11011101 00000011 10110110 H...

000000e0: 01111100 00010011 00110000 |.0

D.2.3. Streaminfo metadata block

Most of the streaminfo block, including its header, is the same as in example 1, so only

parts that are different are listed in the following table

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 53

Start Length Contents Description

0x04+0 1 bit 0b0 Not the last metadata block

0x08+0 2 byte 0x0010 Min. block size 16

0x0a+0 2 byte 0x0010 Max. block size 16

0x0c+0 3 byte 0x000017 Min. frame size 23 byte

0x0f+0 3 byte 0x000044 Max. frame size 68 byte

0x15+4 36 bit 0b0000, 0x00000013 Total no. of samples 19

0x1a 16 byte (...) MD5 signature

Table 31

This time, the minimum and maximum block sizes are reflected in the file: there is one

block of 16 samples, the last block (which has 3 samples) is not considered for the

minimum block size. The MD5 signature is 0xd5b0 5649 75e9 8b8d 8b93 0422 757b 8103,

this will be verified at the end of this example.

D.2.4. Seektable

The seektable metadata block only holds one entry. It is not really useful here, as it points

to the first frame, but it is enough for this example. The seektable metadata block is broken

down in the following table.

Start Length Contents Description

0x2a+0 1 bit 0b0 Not the last metadata block

0x2a+1 7 bit 0b0000011 Seektable metadata block

0x2b+0 3 byte 0x000012 Length 18 byte

0x2e+0 8 byte 0x0000000000000000 Seekpoint to sample 0

0x36+0 8 byte 0x0000000000000000 Seekpoint to offset 0

0x3e+0 2 byte 0x0010 Seekpoint to block size 16

Table 32

D.2.5. Vorbis comment

The Vorbis comment metadata block contains the vendor string and a single comment. It is

broken down in the following table.

Start Length Contents Description

0x40+0 1 bit 0b0 Not the last metadata block

0x40+1 7 bit 0b0000100 Vorbis comment metadata block

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 54

Start Length Contents Description

0x41+0 3 byte 0x00003a Length 58 byte

0x44+0 4 byte 0x20000000 Vendor string length 32 byte

0x48+0 32 byte (...) Vendor string

0x68+0 4 byte 0x01000000 Number of fields 1

0x6c+0 4 byte 0x0e000000 Field length 14 byte

0x70+0 14 byte (...) Field contents

Table 33

The vendor string is reference libFLAC 1.3.3 20190804, the field contents of the only field is

TITLE=שלום��של. The Vorbis comment field is 14 bytes but only 10 characters in size, because it

contains four 2-byte characters.

D.2.6. Padding

The last metadata block is a (very short) padding block.

Start Length Contents Description

0x7e+0 1 bit 0b1 Last metadata block

0x7e+1 7 bit 0b0000001 Padding metadata block

0x7f+0 3 byte 0x000006 Length 6 byte

0x82+0 6 byte 0x000000000000 Padding bytes

Table 34

D.2.7. First audio frame

The frame header starts at position 0x88 and is broken down in the following table.

Start Length Contents Description

0x88+0 15 bit 0xff, 0b1111100 frame sync

0x89+7 1 bit 0b0 block size strategy

0x8a+0 4 bit 0b0110 8-bit block size further down

0x8a+4 4 bit 0b1001 sample rate 44.1kHz

0x8b+0 4 bit 0b1001 right-side stereo

0x8b+4 3 bit 0b100 bit depth 16 bit

0x8b+7 1 bit 0b0 mandatory 0 bit

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 55

Start Length Contents Description

0x8c+0 1 byte 0x00 frame number 0

0x8d+0 1 byte 0x0f block size 16

0x8e+0 1 byte 0x99 frame header CRC

Table 35

The first subframe starts at byte 0x8f, it is broken down in the following table excluding the

coded residual. As this subframe codes for a side channel, the bit depth is increased by 1

bit from 16 bit to 17 bit. This is most clearly present in the unencoded warm-up sample.

Start Length Contents Description

0x8f+0 1 bit 0b0 mandatory 0 bit

0x8f+1 6 bit 0b001001 fixed subframe, 1st order

0x8f+7 1 bit 0b0 no wasted bits present

0x90+0 17 bit 0x0867, 0b0 unencoded warm-up sample

Table 36

The coded residual is broken down in the following table. All quotients are unary coded, all

remainders are stored unencoded with a number of bits specified by the Rice parameter.

Start Length Contents Description

0x92+1 2 bit 0b00 Rice code with 4-bit parameter

0x92+3 4 bit 0b0000 Partition order 0

0x92+7 4 bit 0b1011 Rice parameter 11

0x93+3 4 bit 0b0001 Quotient 3

0x93+7 11 bit 0b00011110100 Remainder 244

0x95+2 2 bit 0b01 Quotient 1

0x95+4 11 bit 0b01000100001 Remainder 545

0x96+7 2 bit 0b01 Quotient 1

0x97+1 11 bit 0b00110011000 Remainder 408

0x98+4 1 bit 0b1 Quotient 0

0x98+5 11 bit 0b11101011101 Remainder 1885

0x9a+0 1 bit 0b1 Quotient 0

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 56

Start Length Contents Description

0x9a+1 11 bit 0b11101110000 Remainder 1904

0x9b+4 1 bit 0b1 Quotient 0

0x9b+5 11 bit 0b10101101111 Remainder 1391

0x9d+0 1 bit 0b1 Quotient 0

0x9d+1 11 bit 0b11000000000 Remainder 1536

0x9e+4 1 bit 0b1 Quotient 0

0x9e+5 11 bit 0b10000010111 Remainder 1047

0xa0+0 1 bit 0b1 Quotient 0

0xa0+1 11 bit 0b10010101110 Remainder 1198

0xa1+4 1 bit 0b1 Quotient 0

0xa1+5 11 bit 0b01100100001 Remainder 801

0xa3+0 13 bit 0b0000000000001 Quotient 12

0xa4+5 11 bit 0b11011100111 Remainder 1767

0xa6+0 1 bit 0b1 Quotient 0

0xa6+1 11 bit 0b01001110111 Remainder 631

0xa7+4 1 bit 0b1 Quotient 0

0xa7+5 11 bit 0b01000100100 Remainder 548

0xa9+0 1 bit 0b1 Quotient 0

0xa9+1 11 bit 0b01000010101 Remainder 533

0xaa+4 1 bit 0b1 Quotient 0

0xaa+5 11 bit 0b00100001100 Remainder 268

Table 37

At this point, the decoder should know it is done decoding the coded residual, as it received

16 samples: 1 warm-up sample and 15 residual samples. Each residual sample can be

calculated from the quotient and remainder, and undoing the zig-zag encoding. For

example, the value of the first zig-zag encoded residual sample is 3 * 2^11 + 244 = 6388.

As this is an even number, the zig-zag encoding is undone by dividing by 2, the residual

sample value is 3194. This is done for all residual samples in the next table

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 57

Quotient Remainder Zig-zag encoded Residual sample value

3 244 6388 3194

1 545 2593 -1297

1 408 2456 1228

0 1885 1885 -943

0 1904 1904 952

0 1391 1391 -696

0 1536 1536 768

0 1047 1047 -524

0 1198 1198 599

0 801 801 -401

12 1767 26343 -13172

0 631 631 -316

0 548 548 274

0 533 533 -267

0 268 268 134

Table 38

It can be calculated that using a Rice code is in this case more efficient than storing values

unencoded. The Rice code (excluding the partition order and parameter) is 199 bits in

length. The largest residual value (-13172) would need 15 bits to be stored unencoded, so

storing all 15 samples with 15 bits results in a sequence with a length of 225 bits.

The next step is using the predictor and the residuals to restore the sample values. As this

subframe uses a fixed predictor with order 1, this means adding the residual value to the

value of the previous sample.

Residual Sample value

(warm-up) 4302

3194 7496

-1297 6199

1228 7427

-943 6484

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 58

Residual Sample value

952 7436

-696 6740

768 7508

-524 6984

599 7583

-401 7182

-13172 -5990

-316 -6306

274 -6032

-267 -6299

134 -6165

Table 39

With this, decoding of the first subframe is complete. Decoding of the second subframe is

very similar, as it also uses a fixed predictor of order 1, so this is left as an exercise for the

reader, results are in the next table. The next step is stereo decorrelation, which is done in

the following table. As the stereo decorrelation is right-side, in which the actual ordering of

the subframes is side-right, the samples in the right channel come directly from the second

subframe, while the samples in the left channel are found by adding the values of both

subframes for each sample.

Subframe 1 Subframe 2 Left Right

4302 6070 10372 6070

7496 10545 18041 10545

6199 8743 14942 8743

7427 10449 17876 10449

6484 9143 15627 9143

7436 10463 17899 10463

6740 9502 16242 9502

7508 10569 18077 10569

6984 9840 16824 9840

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 59

Subframe 1 Subframe 2 Left Right

7583 10680 18263 10680

7182 10113 17295 10113

-5990 -8428 -14418 -8428

-6306 -8895 -15201 -8895

-6032 -8476 -14508 -8476

-6299 -8896 -15195 -8896

-6165 -8653 -14818 -8653

Table 40

As the second subframe ends byte-aligned, no padding bits follow it. Finally, the last 2 bytes

of the frame contain the frame CRC.

D.2.8. Second audio frame

The second audio frame is very similar to the frame decoded in the first example, but this

time not 1 but 3 samples are present.

The frame header starts at position 0xcc and is broken down in the following table.

Start Length Contents Description

0xcc+0 15 bit 0xff, 0b1111100 frame sync

0xcd+7 1 bit 0b0 block size strategy

0xce+0 4 bit 0b0110 8-bit block size further down

0xce+4 4 bit 0b1001 sample rate 44.1kHz

0xcf+0 4 bit 0b0001 stereo, no decorrelation

0xcf+4 3 bit 0b100 bit depth 16 bit

0xcf+7 1 bit 0b0 mandatory 0 bit

0xd0+0 1 byte 0x01 frame number 1

0xd1+0 1 byte 0x02 block size 3

0xd2+0 1 byte 0xa4 frame header CRC

Table 41

The first subframe starts at 0xd3+0 and is broken down in the following table.

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 60

Start Length Contents Description

0xd3+0 1 bit 0b0 mandatory 0 bit

0xd3+1 6 bit 0b000001 verbatim subframe

0xd3+7 1 bit 0b0 no wasted bits present

0xd4+0 16 bit 0xc382 16-bit unencoded sample

0xd6+0 16 bit 0xc40b 16-bit unencoded sample

0xd8+0 16 bit 0xc14a 16-bit unencoded sample

Table 42

The second subframe starts at 0xda+0 and is broken down in the following table

Start Length Contents Description

0xda+0 1 bit 0b0 mandatory 0 bit

0xda+1 6 bit 0b000001 verbatim subframe

0xda+7 1 bit 0b1 wasted bits present

0xdb+0 1 bit 0b1 1 wasted bit

0xdb+1 15 bit 0b110111001001000 15-bit unencoded sample

0xdd+0 15 bit 0b110111010000001 15-bit unencoded sample

0xde+7 15 bit 0b110110110011111 15-bit unencoded sample

Table 43

As this subframe has wasted bits, the 15-bit unencoded samples need to be shifted left by 1

bit. For example, sample 1 is stored as -4536 and becomes -9072 after shifting left 1 bit.

As the last subframe does not end on byte alignment, 2 padding bits are added before the 2

byte frame CRC follows at 0xe1+0.

D.2.9. MD5 checksum verification

All samples in the file have been decoded, we can now verify the MD5 sum. All sample

values must be interleaved and stored signed, coded little-endian. The result of this follows

in groups of 12 samples (i.e. 6 interchannel samples) per line.

The MD5sum of this is indeed the same as the one found in the streaminfo metadata block.

0x8428 B617 7946 3129 5E3A 2722 D445 D128 0B3D B723 EB45 DF28

0x723f 1E25 9D46 4929 B841 7026 5747 B829 8F43 8127 AEC7 14DF

0x9FC4 41DD 54C7 E4DE A5C4 40DD 1EC6 33DE 82C3 90DC 0BC4 02DD

0x4AC1 3EDB

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 61

D.3. Decoding example 3

This example is once again a very short FLAC file. The focus of this example is on decoding

a subframe with a linear predictor and a coded residual with more than one partition.

D.3.1. Example file 3 in hexadecimal representation

00000000: 664c 6143 8000 0022 1000 1000 fLaC..."....

0000000c: 0000 1f00 001f 07d0 0070 0000 p..

00000018: 0018 f8f9 e396 f5cb cfc6 dc80

00000024: 7f99 7790 6b32 fff8 6802 0017 ..w.k2..h...

00000030: e944 004f 6f31 3d10 47d2 27cb .D.Oo1=.G.'.

0000003c: 6d09 0831 452b dc28 2222 8057 m..1E+.("".W

00000048: a3 .

D.3.2. Example file 3 in binary representation (only audio frame)

0000002a: 11111111 11111000 01101000 00000010 ..h.

0000002e: 00000000 00010111 11101001 01000100 ...D

00000032: 00000000 01001111 01101111 00110001 .Oo1

00000036: 00111101 00010000 01000111 11010010 =.G.

0000003a: 00100111 11001011 01101101 00001001 '.m.

0000003e: 00001000 00110001 01000101 00101011 .1E+

00000042: 11011100 00101000 00100010 00100010 .(""

00000046: 10000000 01010111 10100011 .W.

D.3.3. Streaminfo metadata block

Most of the streaminfo metadata block, including its header, is the same as in example 1,

so only parts that are different are listed in the following table

Start Length Contents Description

0x0c+0 3 byte 0x00001f Min. frame size 31 byte

0x0f+0 3 byte 0x00001f Max. frame size 31 byte

0x12+0 20 bit 0x07d0, 0x0000 Sample rate 32000 hertz

0x14+4 3 bit 0b000 1 channel

0x14+7 5 bit 0b00111 Sample bit depth 8 bit

0x15+4 36 bit 0b0000, 0x00000018 Total no. of samples 24

0x1a 16 byte (...) MD5 signature

Table 44

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 62

D.3.4. Audio frame

The frame header starts at position 0x2a and is broken down in the following table.

Start Length Contents Description

0x2a+0 15 bit 0xff, 0b1111100 Frame sync

0x2b+7 1 bit 0b0 Block size strategy

0x2c+0 4 bit 0b0110 8-bit block size further down

0x2c+4 4 bit 0b1000 Sample rate 32kHz

0x2d+0 4 bit 0b0000 Mono audio (1 channel)

0x2d+4 3 bit 0b001 Bit depth 8 bit

0x2d+7 1 bit 0b0 Mandatory 0 bit

0x2e+0 1 byte 0x00 Frame number 0

0x2f+0 1 byte 0x17 Block size 24

0x30+0 1 byte 0xe9 Frame header CRC

Table 45

The first and only subframe starts at byte 0x31, it is broken down in the following table,

without the coded residual.

Start Length Contents Description

0x31+0 1 bit 0b0 Mandatory 0 bit

0x31+1 6 bit 0b100010 Linear prediction subframe, 3rd order

0x31+7 1 bit 0b0 No wasted bits present

0x32+0 8 bit 0x00 Unencoded warm-up sample 0

0x33+0 8 bit 0x4f Unencoded warm-up sample 79

0x34+0 8 bit 0x6f Unencoded warm-up sample 111

0x35+0 4 bit 0b0011 Coefficient precision 4 bit

0x35+4 5 bit 0b00010 Prediction right shift 2

0x36+1 4 bit 0b0111 Predictor coefficient 7

0x36+5 4 bit 0b1010 Predictor coefficient -6

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 63

Start Length Contents Description

0x37+1 4 bit 0b0010 Predictor coefficient 2

Table 46

The data stream continues with the coded residual, which is broken down in the following

table. Residual partition 3 and 4 are left as an exercise for the reader.

Start Length Contents Description

0x37+5 2 bit 0b00 Rice-coded residual, 4-bit parameter

0x37+7 4 bit 0b0010 Partition order 2

0x38+3 4 bit 0b0011 Rice parameter 3

0x38+7 1 bit 0b1 Quotient 0

0x39+0 3 bit 0b110 Remainder 6

0x39+3 1 bit 0b1 Quotient 0

0x39+4 3 bit 0b001 Remainder 1

0x39+7 4 bit 0b0001 Quotient 3

0x3a+3 3 bit 0b001 Remainder 1

0x3a+6 4 bit 0b1111 No Rice parameter, escape code

0x3b+2 5 bit 0b00101 Partition encoded with 5 bits

0x3b+7 5 bit 0b10110 Residual -10

0x3c+4 5 bit 0b11010 Residual -6

0x3d+1 5 bit 0b00010 Residual 2

0x3d+6 5 bit 0b01000 Residual 8

0x3e+3 5 bit 0b01000 Residual 8

0x3f+0 5 bit 0b00110 Residual 6

0x3f+5 4 bit 0b0010 Rice parameter 2

0x40+1 22 bit (...) Residual partition 3

0x42+7 4 bit 0b0001 Rice parameter 1

0x43+3 23 bit (...) Residual partition 4

Table 47

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 64

The frame ends with 6 padding bits and a 2 byte frame CRC

To decode this subframe, 21 predictions have to be calculated and added to their

corresponding residuals. This is a sequential process: as each prediction uses previous

samples, it is not possible to start this decoding halfway a subframe or decode a subframe

with parallel threads.

The following table breaks down the calculation of each sample. For example, the predictor

without shift value of row 4 is found by applying the predictor with the three warm-up

samples: 7*111 - 6*79 + 2*0 = 303. This value is then shifted right by 2 bit: 303 >> 2 =

75. Then, the decoded residual sample is added: 75 + 3 = 78.

Residual Predictor w/o shift Predictor Sample value

(warm-up) N/A N/A 0

(warm-up) N/A N/A 79

(warm-up) N/A N/A 111

3 303 75 78

-1 38 9 8

-13 -190 -48 -61

-10 -319 -80 -90

-6 -248 -62 -68

2 -58 -15 -13

8 137 34 42

8 236 59 67

6 191 47 53

0 53 13 13

-3 -93 -24 -27

-5 -161 -41 -46

-4 -134 -34 -38

-1 -44 -11 -12

1 52 13 14

1 94 23 24

4 60 15 19

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 65

Residual Predictor w/o shift Predictor Sample value

2 17 4 6

2 -24 -6 -4

2 -26 -7 -5

0 1 0 0

Table 48

Lining all these samples up, we get the following input for the MD5 summing process.

Which indeed results in the MD5 signature found in the streaminfo metadata block.

0x004F 6F4E 08C3 A6BC F32A 4335 0DE5 D2DA F40E 1813 06FC FB00

Authors' Addresses

Martijn van Beurden
Netherlands

 mvanb1@gmail.com Email:

Andrew Weaver
 theandrewjw@gmail.com Email:

Internet-Draft FLAC April 2023

van Beurden & Weaver Expires 5 October 2023 Page 66

mailto:mvanb1@gmail.com
mailto:theandrewjw@gmail.com

	Free Lossless Audio Codec
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation and Conventions
	3. Definitions
	4. Conceptual overview
	4.1. Blocking
	4.2. Interchannel Decorrelation
	4.3. Prediction
	4.4. Residual Coding

	5. Format principles
	6. Format lay-out
	7. Streamable subset
	8. File-level metadata
	8.1. Metadata block header
	8.2. Streaminfo
	8.3. Padding
	8.4. Application
	8.5. Seektable
	8.5.1. Seekpoint

	8.6. Vorbis comment
	8.6.1. Standard field names
	8.6.2. Channel mask

	8.7. Cuesheet
	8.7.1. Cuesheet track
	8.7.1.1. Cuesheet track index point

	8.8. Picture

	9. Frame structure
	9.1. Frame header
	9.1.1. Block size bits
	9.1.2. Sample rate bits
	9.1.3. Channels bits
	9.1.4. Bit depth bits
	9.1.5. Coded number
	9.1.6. Uncommon block size
	9.1.7. Uncommon sample rate
	9.1.8. Frame header CRC

	9.2. Subframes
	9.2.1. Subframe header
	9.2.2. Wasted bits per sample
	9.2.3. Constant subframe
	9.2.4. Verbatim subframe
	9.2.5. Fixed predictor subframe
	9.2.6. Linear predictor subframe
	9.2.7. Coded residual
	9.2.7.1. Escaped partition
	9.2.7.2. Rice code
	9.2.7.3. Residual sample value limit

	9.3. Frame footer

	10. Container mappings
	10.1. Ogg mapping
	10.2. Matroska mapping
	10.3. ISO Base Media File Format (MP4) mapping

	11. Implementation status
	12. Security Considerations
	13. IANA Considerations
	13.1. Media type registration

	14. Acknowledgments
	15. Normative References
	16. Informative References
	Appendix A. Numerical considerations
	A.1. Determining necessary data type size
	A.2. Stereo decorrelation
	A.3. Prediction
	A.4. Residual
	A.5. Rice coding

	Appendix B. Past format changes
	B.1. Addition of block size strategy flag
	B.2. Restriction of encoded residual samples
	B.3. Addition of 5-bit Rice parameter
	B.4. Restriction of LPC shift to non-negative values

	Appendix C. Interoperability considerations
	C.1. Features outside of streamable subset
	C.2. Variable block size
	C.3. 5-bit Rice parameter
	C.4. Rice escape code
	C.5. Uncommon block size
	C.6. Uncommon bit depth
	C.7. Multi-channel audio and uncommon sample rates

	Appendix D. Examples
	D.1. Decoding example 1
	D.1.1. Example file 1 in hexadecimal representation
	D.1.2. Example file 1 in binary representation
	D.1.3. Signature and streaminfo
	D.1.4. Audio frames

	D.2. Decoding example 2
	D.2.1. Example file 2 in hexadecimal representation
	D.2.2. Example file 2 in binary representation (only audio frames)
	D.2.3. Streaminfo metadata block
	D.2.4. Seektable
	D.2.5. Vorbis comment
	D.2.6. Padding
	D.2.7. First audio frame
	D.2.8. Second audio frame
	D.2.9. MD5 checksum verification

	D.3. Decoding example 3
	D.3.1. Example file 3 in hexadecimal representation
	D.3.2. Example file 3 in binary representation (only audio frame)
	D.3.3. Streaminfo metadata block
	D.3.4. Audio frame

	Authors' Addresses

