
RIFT Auto-FR

Abstract
This document specifies procedures that allow IS-IS Flood Reflection topologies to be fully and
automatically provisioned when using RIFT by leveraging RIFT's no-touch ZTP architecture.

Workgroup: RIFT
Internet-Draft: draft-head-rift-auto-fr-00
Published: 29 December 2021
Intended Status: Standards Track
Expires: 2 July 2022
Authors: J. Head, Ed.

Juniper Networks
T. Przygienda
Juniper Networks

C. Barth
Juniper Networks

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 July 2022.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Head, et al. Expires 2 July 2022 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

2. Design Considerations

3. Auto-FR Device Roles

3.1. All Participating Nodes

3.2. Flood Reflectors

3.3. Flood Reflectors Clients

4. Auto-FR Variable Derivation

4.1. System ID

4.2. Auto-FR Version

4.3. Flood Reflector Cluster ID

4.4. Loopback Address

4.4.1. Leaf Nodes as Flood Reflector Clients

4.4.2. ToF Nodes as Flood Reflectors

4.4.2.1. Flood Reflector Election Procedures

5. Operational Considerations

5.1. RIFT Underlay and IS-IS Flood Reflection Topology

5.2. Auto-FR Analytics

5.2.1. Auto-FR Global Analytics Key Type

6. Acknowledgements

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Thrift Models

A.1. common.thrift

A.2. encoding.thrift

A.3. auto_flood_reflection_kv.thrift

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 2

1. Introduction
 is a mechanism that enables large single-area Level 2 IS-IS

networks to scale well beyond their typical properties when deployed in Clos/Fat Tree topologies.

 is a protocol that focuses heavily on operational simplicity. It natively supports Zero Touch
Provisioning (ZTP) functionality that allows each node to automatically derive its place in the
topology and configure itself accordingly when properly cabled as a Clos, Fat Tree, or other
similarly structured variant.

This sense of topological hierarchy makes RIFT well-suited to automatically provision IS-IS Flood
Reflection with no additional external interaction using its ZTP functionality.

1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in .

2. Design Considerations
IS-IS Flood Reflection operates using flood reflectors at the top of the fabric and flood reflector
clients at the bottom of the fabric. Any nodes in the middle are not required to support flood
reflection functionality, nor do they need to support Auto-FR.

Nodes taking part in flood reflection require specific variables for deployment. For example, a
cluster ID that is unique to the particular fabric or loopback addresses that are unique to a
particular node. RIFT has enough topological information to derive these variables with the
appropriate scope in a distributed fashion automatically.

Once the Flood Reflection topology is built, RIFT Key-Value TIEs can be used to distribute
operational state information to allow for basic validation without additional tooling.

3. Auto-FR Device Roles
Auto-FR requires that each node understands its given role within the scope of the Flood
Reflection deployment, so each node derives the necessary variables and resulting configuration.

Appendix B. Auto-FR Variable Derivation

Authors' Addresses

IS-IS Flood Reflection [IS-IS-FR]

[RIFT]

RFC 2119 [RFC2119]

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 3

3.1. All Participating Nodes
Not all nodes have to participate in Auto-FR, however, if a node does assume an Auto-FR role, it
MUST derive the following variables:

Flood Reflector Cluster ID
The Flood Reflector Cluster ID us to distinguish reflection domains, similar to that of a
BGP Cluster ID for route reflection.

IPv6 Loopback Address
Unique IPv6 loopback address.

ISO System ID
The ISO System Identifier used in IS-IS.

ISO NET
The ISO Network Entity Title used in IS-IS.

3.2. Flood Reflectors
This section defines an Auto-FR role whereby some Top-of-Fabric nodes act as IS-IS flood
reflectors. It is expected that flood reflectors will establish Level 2 IS-IS adjacencies with flood
reflector clients in the same area in the same fabric. The typical flood reflector requirements do
not change, however, determining which specific values to use requires further consideration.

ToF nodes performing flood reflector functionality MUST derive the following variables:

IPv6 Flood Reflector Loopback Address
Unique IPv6 loopback address.

3.3. Flood Reflectors Clients
Although no specific variables for Flood Reflector Clients are described at this time, the generic
role is specified as a placeholder for future enhancements.

Future Consideration
Future Consideration

4. Auto-FR Variable Derivation
As previously mentioned, not all nodes are required to derive all variables in a network (e.g. a
transit spine node may not need to derive any or participate in Auto-FR at all). All variables are
derived from RIFT's FSM or ZTP mechanism, so no additional flooding other than RIFT's typical
flooding is necessary.

It is also important to mention that all variable derivation is in some way based on System ID
and/or Cluster ID and MUST comply precisely with calculation methods specified in the Auto-FR
Variable Derivation section to allow interoperability between different implementations. All
foundational code elements are also mentioned there.

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 4

4.1. System ID
The 64-bit RIFT System ID that uniquely identifies a node as defined in . This not derived
specifically for Auto-FR, but for all RIFT nodes and is used in the derivation procedures described
in this section.

4.2. Auto-FR Version
This section describes extensions to both the RIFT LIE packet and Node-TIE schemas in the form
of a 16-bit value that identifies the Auto-FR Version. Auto-FR capable nodes MUST support this
extension, but MAY choose not to advertise it in LIEs and Node-TIEs when Auto-FR is not being
utilized.

This section also describes an extension to the Node Capbilities schema indicating whether a
node supports Auto-FR.

Auto-FR Version MUST be considered in existing RIFT adjacency FSM rules so that nodes that
support Auto-FR can inter-operate with nodes that do not. The LIE validation is extended with
the following clause:

Miscabling should be declared if this clause is not met.

The details necessary changes to the RIFT LIE, Node-TIE, and Node
Capabilities thrift schema.

4.3. Flood Reflector Cluster ID
This section describes extensions to both the RIFT LIE packet and Node-TIE schemas in the form
of a 32-bit value that identifies the Auto-FR Cluster ID. Auto-FR capable nodes MUST support this
extension, but MAY choose not to advertise it in LIEs and Node-TIEs when Auto-FR is not being
utilized.

A Cluster ID with a value of 0 is considered invalid and MUST NOT be used for any purpose.

The details necessary changes to the RIFT LIE and Node-TIE thrift
schema.

4.4. Loopback Address
Auto-FR nodes MUST derive a ULA-scoped IPv6 loopback address to be used in IS-IS. Calculation
is done using the 6-bytes of reserved ULA space, the 4-byte Cluster ID and the node's 8-byte
System ID. Derivation of the System ID varies slightly depending upon the node's location/role in
the fabric and will be described in subsequent sections.

[RIFT]

(if auto_flood_reflection_version is not advertised by either node OR
 if auto_flood_reflection_version is identical on both nodes)

appendix (Appendix A)

appendix (Appendix A)

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 5

4.4.1. Leaf Nodes as Flood Reflector Clients

Calculation is done using the 6-bytes of reserved ULA space, the 4-byte Cluster ID, and the node's
8-byte System ID.

In order for leaf nodes to derive IPv6 loopbacks, the following algorithms are required -
 and .

IPv4 addresses MAY be supported, but it should be noted that they have a higher likelihood of
collision. The appendix contains the required algorithm to
support IPv4 loopback derivation.

auto_fr_cidsidv6loopback (Figure 11) auto_fr_v6prefixcidsid2loopback (Figure 15)

auto_fr_cidsid2v4loopback (Figure 10)

4.4.2. ToF Nodes as Flood Reflectors

ToF nodes acting as flood reflectors MUST derive their loopback address according to the specific
section describing the algorithm. Calculation is done using the 6-bytes of reserved ULA space, the
4-byte Cluster ID, and the 8-byte System ID of each elected route reflector.

In order for ToF nodes to derive IPv6 loopbacks, the following algorithms are required -
, , and

.

IPv4 addresses MAY be supported, but it should be noted that they have a higher likelihood of
collision. The appendix contains the required algorithm to
support IPv4 loopback derivation.

A topology MUST elect at least 1 Top-of-Fabric node as an IS-IS flood reflector, but SHOULD elect
3.

4.4.2.1. Flood Reflector Election Procedures
Each ToF performs the election independently based on system IDs of other ToF nodes in the
fabric obtained via southbound reflection. The route reflector election procedures are defined as
follows:

1. ToF node with the highest System ID.
2. ToF node with the lowest System ID.
3. ToF node with the 2nd highest System ID.
4. Etc.

This ordering is necessary to prevent a single node with either the highest or lowest System ID
from triggering changes to flood reflector loopback addresses as it would result in all IS-IS
adjacencies flapping.

For example, if two nodes, ToF01 and ToF02 with System IDs 002c6af5a281c000 and
002c6bf5788fc000 respectively, ToF02 would be elected due to it having the highest System ID of
the ToFs (002c6bf5788fc000). If a ToF determines that it is elected as flood reflector, it uses the
knowledge of its position in the list to derive flood reflector IPv6 loopback address.

auto_fr_cidsidv6loopback (Figure 11) auto_fr_v6prefixcidsid2loopback (Figure 15)
auto_fr_cidfrpref2frloopback (Figure 7)

auto_fr_cidsid2v4loopback (Figure 10)

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 6

5. Operational Considerations
To fully realize the benefits of Auto-FR, it may help to describe the high-level method. Simply put,
RIFT automatically provisions the underlay and Auto-FR provisions the flood reflection topology.
The goal of this section is to draw simple lines between general fabric concepts, RIFT, and Auto-
FR and how they fit into current network designs and practices.

This section also describes a set of optional that leverages the variables
that have already been derived to provide further operational enhancement to the operator.

5.1. RIFT Underlay and IS-IS Flood Reflection Topology

The algorithm shown in is required to accomplish this."auto_fr_sids2frs" (Figure 12)

Key-Value TIEs [RIFT-KV]

Figure 1: Auto-FR Example Topology

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 7

Figure 1 illustrates a typical 5-stage Clos IP fabric. Each node is named and labelled in such a way
that conveys:

1. The node's generic placement within the context of the RIFT underlay
2. The node's level(s) within the IS-IS area.
3. The node's role within the IS-IS flood reflection topology.

It is important to remember that Auto-FR is not altering anything specific to IS-IS Flood Reflection
topologies, it takes existing deployment scenarios and simplies the provisioning process. The
topology also illustrates the flood reflection adjacencies between ToF and Leaf nodes.

Table 1 should help further align these concepts.

5.2. Auto-FR Analytics
Leaf nodes MAY optionally advertise analytics information about the Auto-FR fabric to ToF nodes
using RIFT Key-Value TIEs. This may be helpful in that validation and troubleshooting activities
can be performed on the ToF nodes.

This section requests suggested values from the RIFT Well-Known Key-Type Registry and
describes their use for Auto-FR.

The normative Thrift schema can be found in the .

5.2.1. Auto-FR Global Analytics Key Type

This Key Type describes node level information within the context of the Auto-FR fabric. The
System ID of the advertising leaf node MUST be used to differentiate the node among other nodes
in the fabric.

The Auto-FR Global Key Type MUST be advertised with the 3rd and 4th bytes of the Key Identifier
consisting of all 0s.

RIFT Placement IS-IS Level IS-IS FR Role

ToF Nodes L1/L2 Flood Reflector

Spine Nodes L1 N/A

Leaf Nodes L1/L2 Flood Reflector Client

Table 1: Role Associations

Name Value Description

Auto-FR Analytics Global 5 Analytics describing an Auto-FR node within a fabric.

Table 2: Requested RIFT Key Registry Values

appendix (Appendix A.3)

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 8

0:

1:

2:

where:

Auto-FR Role:
The value indicating the node's Auto-FR role within the fabric.

Illegal value, MUST NOT be used.

Auto-FR Flood Reflector Client

Auto-FR Flood Reflector

Auto-FR Cluster ID
A 32-bit integer indicating the Auto-FR Cluster ID of the local node.

Functional IS-IS Flood Reflector Adjacency Count:
A 16-bit integer indicating the number of IS-IS Level 2 Flood Reflector adjacencies in
the "Up" state on the local node.

Functional IS-IS Level 1 Shortcut Count
A 16-bit integer indicating the number of IS-IS Level 1 Shortcut adjacencies in the "Up"
state on the local node.

Total IS-IS Flood Reflector Adjacency Count:
A 16-bit integer indicating the total number of IS-IS Level 2 Flood Reflector adjacencies
on the local node regardless of state.

Total IS-IS Level 1 Shortcut Count
A 16-bit integer indicating the total number of IS-IS Level 1 Shortcut adjacencies on the
local node regardless of state.

Figure 2: Auto-FR Global Key-Value TIE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Well-Known | Auto-FR (Global) |
+-+
| (Auto-FR Role, |
| Flood Reflection Cluster ID, |
| Established IS-IS FR Adjacencies, |
| Established IS-IS FR L1 Shortcut Adjacencies, |
| Total IS-IS FR Adjacencies, |
| Total IS-IS FR L1 Shortcut Adjacencies,) |
+-+

6. Acknowledgements
This section will be used to acknowledge major contributors.

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 9

[IS-IS-FR]

[RFC2119]

[RIFT]

[RIFT-KV]

[RIFT-AUTO-EVPN]

8. References

8.1. Normative References

,
, , November

2021.

, , ,
, , March 1997,
.

,
, , July 2021.

,
, , July 2021.

8.2. Informative References

, ,
, October 2021.

7. Security Considerations
This document introduces no new security concerns to RIFT or other specifications referenced in
this document as RIFT natively secures LIE and TIE packets as described in .[RIFT]

Przygienda, A., Bowers, C., Lee, Y., Sharma, A., and R. White "IS-IS Flood
Reflection" Work in Progress, draft-ietf-lsr-isis-flood-reflection-07

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Przygienda, T., Sharma, A., Thubert, P., Rijsman, B., and D. Afanasiev "RIFT:
Routing in Fat Trees" Work in Progress, draft-ietf-rift-rift-14

Head, J. and T. Przygienda "RIFT Keys Structure and Well-Known Registry in
Key Value TIE" Work in Progress, draft-ietf-rift-kv-registry-01

Head, J. and T. Przygienda "RIFT Auto-EVPN" Work in Progress, draft-ietf-
rift-auto-evpn-01

Appendix A. Thrift Models
This section contains the normative Thrift models required to support Auto-FR. Per the main

 specification, all signed values MUST be interpreted as unsigned values.[RIFT]

A.1. common.thrift
This section specifies changes to main RIFT common.thrift model.

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 10

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

Figure 3: RIFT Auto-FR: common.thrift

...
enum AutoFRModel {
 /** Full Mesh of L1 tunnel shortcuts, only model supported currently
with auto FR */
 TunnelMode = 0,
 NoTunnelMode = 1,
}

const AutoFRModel default_autofr_model = AutoFRModel.TunnelMode

typedef i32 FloodReflectionClusterIDType

/// preference to become FR, higher is better
typedef i32 FloodReflectionPreferenceType
...

A.2. encoding.thrift
This section specifies changes to main RIFT encoding.thrift model.

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 11

Figure 4: RIFT Auto-FR: encoding.thrift

struct NodeCapabilities {
...
 /** indicates whether auto-flood-reflection feature is implemented on
this node (but not necessarily enabled). */
 20: optional bool auto_flood_reflection_support
= false;
...
}

struct LIEPacket {
...
 /** It provides optional version of FR ZTP as 256 * MAJOR + MINOR,
indicates support for auto FR */
 40: optional i16
auto_flood_reflection_version;

 41: optional common.FloodReflectionClusterIDType
auto_flood_reflection_cluster_id;
...
}

struct NodeTIEElement {
...
 /** All Auto FR elements MUST be present in at least one TIE in each
direction if auto FR is running. */
 /** It provides optional version of FR ZTP as 256 * MAJOR + MINOR,
indicates support for auto FR */
 30: optional i16
auto_flood_reflection_version;
 /** cluster ID of Auto FR */
 31: optional common.FloodReflectionClusterIDType
auto_flood_reflection_cluster_id;
 /** preference to become FR */
 32: optional common.FloodReflectionPreferenceType
auto_flood_reflection_preference;
...
}

A.3. auto_flood_reflection_kv.thrift
This section contains the normative Auto-FR Analytics Thrift schema.

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 12

Figure 5: RIFT Auto-FR: auto_flood_reflection_kv.thrift

include "common.thrift"

namespace py auto_flood_reflection_kv
namespace rs models

const i8 AutoFRWellKnownKeyType = 2
typedef i16 AutoFRCounterType
typedef i32 AutoFRLongCounterType

const i8 GlobalAutoFRTelemetryKV = 5

/** We don't need the full role structure, only an indication of the node's
basic role */
enum AutoFRRole {
 ILLEGAL = 0,
 auto_fr_leaf = 1,
 auto_fr_reflector = 2,
}

/** Per the according RIFT draft the key comes from the well known space.
 Part of the key is used as Fabric-ID.

 1st byte MUST be = "Well-Known"
 2nd byte MUST be = "Global Auto-FR Telemetry KV",
 3rd/4th bytes MUST be = all 0s
*/
struct AutoFRTelemetryGlobalKV {
 /** Only values that the ToF cannot derive itself should be flooded. */
 1: required set<AutoFRRole> auto_fr_roles,

 2: required common.FloodReflectionClusterIDType cluster_id,

 3: optional AutoFRCounterType
established_isis_fr_adjacencies_count,

 4: optional AutoFRCounterType
established_isis_l1_shortcut_adjacencies_count,

 5: optional AutoFRCounterType
total_isis_fr_adjacencies_count,

 6: optional AutoFRCounterType
total_isis_l1_shortcut_adjacencies_count,
}

Appendix B. Auto-FR Variable Derivation
This section contains the normative Thrift models required to support Auto-FR. Per the main

 specification, all signed values MUST be interpreted as unsigned values.[RIFT]

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 13

Figure 6: RIFT Auto-FR: auto_fr_const_structs_types

/// indicates how many FRs we're computing in AUTO fR
pub const MAX_AUTO_FR_FRS: usize = 3;

/// indicates the cluster has no ID, used in computations to omit effects of
cluster ID
pub const NO_CLUSTER_ID: FloodReflectionClusterIDType = 0;

/// unique v6 prefix for all nodes starts with this
pub fn auto_fr_v6pref(cid: FloodReflectionClusterIDType) -> String {
 format!("FD00:{:04X}:B1", cid)
}

/// how many bytes in a v6pref for different purposes
pub const AUTO_FR_V6PREFLEN: usize = 8 * 5;

/// unique v6 prefix for flood reflector purposes starts like this
pub fn auto_fr_v6frpref(cid: FloodReflectionClusterIDType) -> String {
 format!("FD00:{:04X}:B2", cid)
}

/// unique v4 prefix for IRB purposes
pub const AUTO_FR_V4LOOPBACKNET: u8 = 10;
pub const AUTO_FR_V4LOOPBACKMASK : usize = 8;

Figure 7: RIFT Auto-FR: auto_fr_cidfrpref2frloopback

/// auto FR V6 loopback for FRs
pub fn auto_fr_cidfrpref2frloopback(cid: FloodReflectionClusterIDType,
 preference: u8) -> Result<Ipv6Addr,
ServiceErrorType> {
 auto_fr_v6prefixcidsid2loopback(&auto_fr_v6frpref(cid), cid, (1 +
preference) as _)
}

Figure 8: RIFT Auto-FR: auto_fr_cidsid2isisnet

pub fn auto_fr_cidsid2isisnet(cid: FloodReflectionClusterIDType, sid:
UnsignedSystemID) -> Vec<u8> {
 let mut r = vec![0x49];

 r.extend(&cid.to_ne_bytes());
 r.extend(auto_fr_cidsid2isissid(cid, sid).into_iter());
 r.push(0); // magic end

 assert!(r.len() == 10);

 r
}

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 14

Figure 9: RIFT Auto-FR: auto_fr_cidsid2isissid

/// ISIS system ID derivation
pub fn auto_fr_cidsid2isissid(cid: FloodReflectionClusterIDType, sid:
UnsignedSystemID) -> Vec<u8> {

 let sb = auto_fr_v6hash(cid, sid);

 vec![sb[0],
 sb[1],
 sb[2],
 sb[3],
 sb[4] ^ sb[5],
 sb[6] ^ sb[7],
]
}

Figure 10: RIFT Auto-FR: auto_fr_cidsid2v4loopback

/// v4 loopback address derivation for every node in auto-fr, returns
address and
/// subnet mask length.
pub fn auto_fr_cidsid2v4loopback(cid: FloodReflectionClusterIDType, sid:
UnsignedSystemID) -> (IPv4Address, u8) {
 let mut derived = sid.to_ne_bytes().iter()
 .fold(0 as IPv4Address, |p, e| (p << 4) ^ (*e as IPv4Address));
 derived ^= cid as IPv4Address;
 // use the byte we loose for entropy
 derived ^= derived >> (32 - AUTO_FR_V4LOOPBACKMASK);
 // and sanitize for loopback range, we nuke 8 bits out
 derived &= (!U32MASKS[AUTO_FR_V4LOOPBACKMASK]) as IPv4Address;

 let m = ((AUTO_FR_V4LOOPBACKNET as IPv4Address) << (32 -
AUTO_FR_V4LOOPBACKMASK)) | derived;
 (m as _, AUTO_FR_V4LOOPBACKMASK as _)
}

Figure 11: RIFT Auto-FR: auto_fr_cidsidv6loopback

/// V6 loopback derivation for every node in auto fr
pub fn auto_fr_cidsidv6loopback(cid: FloodReflectionClusterIDType,
 sid: UnsignedSystemID) -> Result<Ipv6Addr,
ServiceErrorType> {
 auto_fr_v6prefixcidsid2loopback(&auto_fr_v6pref(cid), cid, sid)
}

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 15

Figure 12: RIFT Auto-FR: auto_fr_sids2frs

/// function sorts vector of systemIDs first,
/// followed by a shuffle taking largest/smallest/2nd largest/2nd smallest.
pub(crate) fn auto_fr_sids2frs(mut v: Vec<UnsignedSystemID>)
 -> Vec<UnsignedSystemID> {
 v.par_sort();
 if v.len() > 2 {
 let mut s = v.split_off(v.len() / 2);
 s.reverse();
 interleave(v.into_iter(), s.into_iter())
 .collect::<Vec<_>>()
 } else {
 v
 }
}

Figure 13: RIFT Auto-FR: auto_fr_v62octets

pub(crate) fn auto_fr_v62octets(a: Ipv6Addr) -> Vec<u8> {
 a.octets().iter().cloned().collect()
}

Figure 14: RIFT Auto-FR: auto_fr_v6hash

/// generic bytes derivation used for different purposes
pub fn auto_fr_v6hash(cid: FloodReflectionClusterIDType, sid:
UnsignedSystemID)
 -> [u8; 8] {
 let sub = (cid as UnsignedSystemID) ^ sid;

 sub.to_ne_bytes()
}

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 16

Figure 15: RIFT Auto-FR: auto_fr_v6prefixcidsid2loopback

/// local address with encoded cluster ID and system ID for collision free
identifiers. Basis
/// for several different prefixes.
pub fn auto_fr_v6prefixcidsid2loopback(v6pref: &str, cid:
FloodReflectionClusterIDType,
 sid: UnsignedSystemID) ->
Result<Ipv6Addr, ServiceErrorType> {
 assert!(cid != ILLEGAL_CLUSTER_I_D);
 let a = format!("{}00::{}",
 v6pref,
 sid.to_ne_bytes()
 .iter()
 .chunks(2)
 .into_iter()
 .map(|chunk|
 chunk.fold(0u16, |v, n| (v << 8) | *n as u16))
 .map(|v| format!("{:04X}", v))
 .collect::<Vec<_>>()
 .into_iter()
 .join(":")
);

 Ipv6Addr::from_str(&a)
 .map_err(|_| ServiceErrorType::INTERNALRIFTERROR)
}

Figure 16: RIFT Auto-FR: auto_fr_cid2cluster_prefixes

/// cluster prefixes derived instead of advertising default on the cluster
to allow
/// for default route on ToF or leaves
pub fn auto_fr_cid2cluster_prefixes(cid: FloodReflectionClusterIDType) ->
Result<Vec<IPPrefixType>, ServiceErrorType> {
 vec![
 (auto_fr_cidsidv6loopback(cid, ILLEGAL_SYSTEM_I_D as _),
AUTO_FR_V6PREFLEN),
 (auto_fr_cidfrpref2frloopback(cid, 0 as _), AUTO_FR_V6PREFLEN),
]
 .into_iter()
 .map(|(p, _)|
 match p {
 Ok(_) => Ok(
 IPPrefixType::Ipv6prefix(
 IPv6PrefixType {
 address: auto_fr_v62octets(p?),
 prefixlen: AUTO_FR_V6PREFLEN as _,
 })),
 Err(e) => Err(e),
 }
)
 .collect::<Result<Vec<_>, _>>()
}

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 17

Authors' Addresses
Jordan Head ()editor
Juniper Networks
1133 Innovation Way

, Sunnyvale CA
United States of America

 jhead@juniper.net Email:

Tony Przygienda
Juniper Networks
1133 Innovation Way

, Sunnyvale CA
United States of America

 prz@juniper.net Email:

Colby Barth
Juniper Networks
1133 Innovation Way

, Sunnyvale CA
United States of America

 cbarth@juniper.net Email:

Internet-Draft RIFT Auto-FR December 2021

Head, et al. Expires 2 July 2022 Page 18

mailto:jhead@juniper.net
mailto:prz@juniper.net
mailto:cbarth@juniper.net

	RIFT Auto-FR
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Design Considerations
	3. Auto-FR Device Roles
	3.1. All Participating Nodes
	3.2. Flood Reflectors
	3.3. Flood Reflectors Clients

	4. Auto-FR Variable Derivation
	4.1. System ID
	4.2. Auto-FR Version
	4.3. Flood Reflector Cluster ID
	4.4. Loopback Address
	4.4.1. Leaf Nodes as Flood Reflector Clients
	4.4.2. ToF Nodes as Flood Reflectors
	4.4.2.1. Flood Reflector Election Procedures

	5. Operational Considerations
	5.1. RIFT Underlay and IS-IS Flood Reflection Topology
	5.2. Auto-FR Analytics
	5.2.1. Auto-FR Global Analytics Key Type

	6. Acknowledgements
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Thrift Models
	A.1. common.thrift
	A.2. encoding.thrift
	A.3. auto_flood_reflection_kv.thrift
	Appendix B. Auto-FR Variable Derivation
	Authors' Addresses

