
Network Working Group O. Finkelman
Internet-Draft Qwilt
Intended status: Standards Track S. Mishra
Expires: May 3, 2018 Verizon
 October 30, 2017

 CDNI SVA Extensions
 draft-finkelman-cdni-sva-extensions-00

Abstract

 The Open Caching working group of the Streaming Video Alliance is
 focused on the delegation of video delivery request from commercial
 CDNs to a caching layer at the ISP. In that aspect, Open Caching is
 a specific use case of CDNI, where the commercial CDN is the upstream
 CDN (uCDN) and the ISP caching layer is the downstream CDN (dCDN).

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Finkelman & Mishra Expires May 3, 2018 [Page 1]

Internet-Draft CDNI SVA Extensions October 2017

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Request routing . 3
 2.1. Request router address 3
 2.2. uCDN fallback address 4
 3. Content management . 5
 3.1. Content matching rules 5
 3.1.1. Regular expresssion 6
 3.1.2. Playlist . 6
 3.2. Geo limits . 7
 3.3. Scheduled operations 8
 3.4. Trigger extensibility 9
 3.5. Capabilties . 10
 4. Split authentication . 11
 5. CORS delegation . 13
 6. Logging . 16
 6.1. FCI extension for Logging 19
 6.2. Metadata Interface extension for Logging 20
 6.2.1. Logging Configuration object 20
 6.2.2. Transport Configuration object 21
 7. IANA Considerations . 22
 7.1. CDNI Payload Types 22
 7.1.1. CDNI FCI RequestRouterAddress Payload Type 22
 7.1.2. CDNI MI FallbackAddress Payload Type 22
 7.1.3. CDNI MI Logging Payload Type 22
 7.1.4. CDNI MI LoggingTransport Payload Type 23
 8. Security Considerations 23
 9. Acknowledgements . 23
 10. Contributors . 23
 11. References . 23
 11.1. Normative References 23
 11.2. Informative References 25
 Authors’ Addresses . 25

Finkelman & Mishra Expires May 3, 2018 [Page 2]

Internet-Draft CDNI SVA Extensions October 2017

1. Introduction

 In this document, we describe the different use cases of Open Caching
 and the interface and functionality extensions they require, compared
 to the existing CDNI RFCs. For consistency, this document follows
 the CDNI notation of uCDN (the commercial CDN) and dCDN (the ISP
 caching layer). When using the term CP in this document we refer to
 a video content provider.

 The CDNI Logging interface is described in [RFC7937].

 The CDNI metadata interface is described in [RFC8006].

 The CDNI footprint and capability interface is described in
 [RFC8008].

 The CDNI control interface / triggers is described in [RFC8007].

1.1. Terminology

 This document reuses the terminology defined in [RFC6707], [RFC8006],
 [RFC8007], and [RFC8008].

 Additionally, the following terms are used throughout this document
 and are defined as follows:

 o SVA - Streaming Video Alliance.

 o OC - SVA Open Caching.

 o RR - Request Router.

 o CP - Content Provider.

2. Request routing

 This section lists extensions required by request routing features.

2.1. Request router address

 Open Caching uses iterative request redirect as defined in [RFC7336].
 In order for the uCDN to redirect to the dCDN it requires a request
 router address. CDNI RFCs do not specify how the request router
 address is advertised and suggests it may be passed via a bootstrap
 protocol / interface, which is currently not defined.

 We propose to add the request router address as a capability under
 the Footprint and Capabilities interface.

Finkelman & Mishra Expires May 3, 2018 [Page 3]

Internet-Draft CDNI SVA Extensions October 2017

 Use cases

 * Footprint: The dCDN may want to have different RR addresses per
 footprint. Note that a dCDN may spread across multiple
 geographies. This makes it easier to route client request to a
 nearby RR. Though this can be achieved using a single
 canonical name and geo DNS, that approach has limitations, for
 example a client may be using third party DNS resolver, making
 it impossible for the redirector to detect where the client is
 located.

 * Scaling: The dCDN may choose to scale its RR service by
 deploying more RRs in new locations and advertise them via an
 updatable interface like the FCI.

 Proposal

 Advertise request router address in an FCI capability object.

 Example FCI.RequestRouterAddress object:

 {
 "capabilities": [
 {
 "capability-type": "FCI.RequestRouterAddress",
 "capability-value": {
 "address": <endpoint object>
 },
 "footprints": [
 <Footprint objects>
]
 }
]
 }

2.2. uCDN fallback address

 Open Caching requires that the uCDN should provide a fallback address
 to the dCDN to be used in cases where the dCDN cannot properly handle
 the request. To avoid redirect loops, the dCDN would redirect the
 request back to the uCDN but to a different location than the
 original uCDN address, the uCDN will not redirect requests coming to
 that other address.

 Use cases

 * Failover: A dCDN request router receives a request but has no
 caches to which it can route the request to. This can happen

Finkelman & Mishra Expires May 3, 2018 [Page 4]

Internet-Draft CDNI SVA Extensions October 2017

 in the case of failures, or temporary network overload. In
 these cases, the router may choose to redirect the request back
 to the uCDN fallback address.

 * Error: A cache may receive a request that it cannot properly
 serve, for example, some of the metadata objects for that
 service were not properly acquired. In this case the cache may
 resolve to redirect back to uCDN.

 Proposal

 Add a generic metadata object for fallback address similar to
 the source metadata.

 Example MI.FallbackAddress object:

 {
 "generic-metadata-type": "MI.FallbackAddress",
 "generic-metadata-value":
 {
 "sources": [
 {
 "endpoints": [
 "fallback-a.service123.ucdn.example",
 "fallback-b.service123.ucdn.example"
],
 "protocol": "http/1.1"
 },
 {
 "endpoints": ["origin.service123.example"],
 "protocol": "http/1.1"
 }
]
 }
 }

3. Content management

 Open Caching uses the CDNI CI/T [RFC8007] as an interface for content
 management operations. The basic operations are the ones defined in
 the RFC (i.e. purge, invalidate, pre-position).

3.1. Content matching rules

 RFC8007 provides means to match on full content URL or patterns with
 wildcards. The Open Caching working group proposes to add two more
 match rule types.

Finkelman & Mishra Expires May 3, 2018 [Page 5]

Internet-Draft CDNI SVA Extensions October 2017

3.1.1. Regular expresssion

 Using regexp one can create more complex rules to match on objects
 for the cases of invalidation and purge.

 Use cases

 * Purge: Purging specific content within a specific directory
 path. In some cases wildcard MAY be used but it can be a
 constraining or overreaching variable that exposes the assets
 to purge further than desired.

 Proposal

 Add content.regexs to trigger specification.

 Name: content.regexs

 Description: Regexs of content the CI/T Trigger Command
 applies to.

 Value: A JSON array of Regexs represented as JSON strings.

 Mandatory: No, but at least one of "metadata.*", "content.*"
 or "playlist.urls" MUST be present and non-empty.

3.1.2. Playlist

 Using video playlist files, one can trigger an operation that will
 work on a collection of distinct media files in a representation that
 is natural for the content provider. A playlist may have several
 formats, specifically HLS *.m3u8 manifest [RFC8216], MSS *.ismc
 client manifest, and DASH XML MPD file [ISO/IEC 23009-1:2014].

 Use cases

 * Pre-position: Pre-position of content requires passing the full
 list of media files to the dCDN. Passing the manifest instead
 is a more natural interface for both sides as they are both
 supposed to be able to properly read and understand the
 manifest files.

 Proposal

 Add playlist.urls to trigger specification.

Finkelman & Mishra Expires May 3, 2018 [Page 6]

Internet-Draft CDNI SVA Extensions October 2017

 Name: playlist.urls

 Description: URLs of video playlist the CI/T Trigger Command
 applies to.

 Value: A JSON array of Regexs represented as JSON strings.

 Mandatory: No, but at least one of "metadata.*", "content.*"
 or "playlist.urls" MUST be present and non-empty.

3.2. Geo limits

 A content operation may apply for a specific geographical region, or
 need to be excluded from a specific region. In this case, the
 trigger should be applied only to parts of the network that are
 included or not excluded by the geo limit. Note that the limit here
 is on the cache location rather than client location.

 Use cases

 * Pre-position: Certain contracts allow for prepositioning or
 availability of contract in all regions except for certain
 excluded regions in the world, including caches. For example,
 some CPs content cannot ever knowingly touch servers in a
 specific country, including caches. Therefore, these regions
 MUST be excluded from a pre-positioning operation.

 * Purge: In certain cases, content may have been located on
 servers in regions where the content MUST not reside on. In
 such cases a purge operation to remove content specifically
 from that region, is required.

 Proposal

 Add GEO locations as an option in the trigger specification.
 We should consider where this locations object is defined.
 Should this a part of CI/T or there can be a way we can use
 metadata objects. The generic metadata object MI.LocationAcl
 has the same syntax, though the meaning is different as the
 limit here is on caches rather than end user locations.

 Example of trigger specification with a geo limit:

Finkelman & Mishra Expires May 3, 2018 [Page 7]

Internet-Draft CDNI SVA Extensions October 2017

 POST /triggers HTTP/1.1
 User-Agent: example-user-agent/0.1
 Host: dcdn.example.com
 Accept: */*
 Content-Type: application/cdni; ptype=ci-trigger-command
 Content-Length: 352

 {
 "trigger": {
 "type": "preposition",
 "content.urls": [
 "https://www.example.com/a/b/c/1",
 "https://www.example.com/a/b/c/2"
]
 },
 "locations": [
 {
 "action": "allow" / "deny",
 "footprints": [
 {
 "footprint-type": "countrycode",
 "footprint-value": ["us"]
 }
]
 }
],
 "cdn-path": ["AS64496:1"]
 }

3.3. Scheduled operations

 A uCDN may wish to perform content management operation on the dCDN
 with a defined local time schedule.

 Use cases

 * Pre-position: A content provider wishes to pre-populate a new
 episode at off-peak time so that it would be ready on caches
 (for example home caches) at prime time when the episode is
 released for viewing. This requires an interface that directs
 the dCDN when to pre-position the content; the time frame is
 local time per area as the off-peak time is also localized.

 Proposal

 Add an execution time window as an option in the trigger
 specification.

Finkelman & Mishra Expires May 3, 2018 [Page 8]

Internet-Draft CDNI SVA Extensions October 2017

 Example of trigger specification with a schedule limit:

 POST /triggers HTTP/1.1
 User-Agent: example-user-agent/0.1
 Host: dcdn.example.com
 Accept: */*
 Content-Type: application/cdni; ptype=ci-trigger-command
 Content-Length: 352

 {
 "trigger": {
 "type": "preposition",
 "content.urls": [
 "https://www.example.com/a/b/c/1",
 "https://www.example.com/a/b/c/2"
]
 },
 "time-windows": [
 {
 "time-type": "local" / "UTC",
 "start": "<seconds since UNIX epoch>",
 "end": "<seconds since UNIX epoch>"

 }
],
 "cdn-path": ["AS64496:1"]
 }

3.4. Trigger extensibility

 There are cases in which some new data has to pass in the trigger
 which was not thought of in advance. We propose the add a mechanism
 to the trigger spec which will be similar to the MI generic metadata,
 allowing parties to easily add more information, that can later be
 standardized if required.

 Use cases

 * Purge content by acquisition time: A uCDN finds that due to
 configuration mistake it has delivered wrong content, in the
 past two hours. The uCDN would like to instruct the dCDN to
 invalidate all content that was acquired in the past two hours.
 However, there is no such primitive in the trigger
 specification. If this would be a common use case it may
 require the addition of a new generic trigger spec object that
 restrict the match to be on content which was acquired in some
 time spec.

Finkelman & Mishra Expires May 3, 2018 [Page 9]

Internet-Draft CDNI SVA Extensions October 2017

 * Pre-position by cache type: The uCDN would like the dCDN to
 pre-populate some content, but only on a specific layer of the
 caching network, for example, only on home caches. There is
 currently no such option in the interface. By using a generic
 object parties may define such object and implement it between
 them, and later standardize it, if required.

 Proposal

 Add trigger extensibility mechanism to the trigger
 specification.

 Example of trigger extension:

 POST /triggers HTTP/1.1
 User-Agent: example-user-agent/0.1
 Host: dcdn.example.com
 Accept: */*
 Content-Type: application/cdni; ptype=ci-trigger-command
 Content-Length: 352

 {
 "trigger": {
 "type": "purge",
 "content.patterns": [
 "https://www.example.com/*"
]
 },
 "generic-trigger-spec-type": <type-name>,
 "generic-trigger-spec-value":
 {
 <properties of this object>
 }
 }

3.5. Capabilties

 The capabilities added to the triggers interface are not mandatory to
 support and are, therefore, best negotiated via the FCI.

 Use cases

 * Content management operations: Advertise which content
 operations are supported by the dCDN. CDNI defines three
 operations (purge, invalidate, pre-position), but it does not
 necessarily mean that all dCDNs support all of them. The uCDN

Finkelman & Mishra Expires May 3, 2018 [Page 10]

Internet-Draft CDNI SVA Extensions October 2017

 may prefer to work only with dCDN that support what the uCDN
 needs.

 * Content mapping types: Advertise which mapping types are
 supported, for example, if adding content regexp and possibly
 playlists, not all dCDN would support it. For playlist,
 advertise which types and versions of protocols are supported,
 e.g. HLS/DASH/SS, DASH templates.

 * Trigger spec objects: Advertise which trigger spec object are
 supported, for example time-window, geo-limit etc.

 Proposal

 Define the non-mandatory objects as generic objects, similar to
 the metadata generic objects, and then the FCI can declare
 which ones of the trigger spec objects are supported. .

4. Split authentication

 Different CDNs and Content Providers apply different access control
 and authentication of user requests. It is not feasible for a dCDN,
 or ISP cache layer, to implement every scheme a uCDN may have thought
 of, and, unfortunately, it is not reasonable to expect that uCDNs and
 CPs will move from their current implementation to a new standard,
 any time soon. In some cases, existing implementation also include
 secrets under NDA; sharing them with a third party dCDN is unlikely
 to happen. Therefore, we aim to look for a solid, generic solution
 that keeps the access control, authentication and authorization logic
 in the origin/uCDN.

 Use cases

 * URI signing: There are numerous methods in which a CP signs its
 URIs such that the uCDN can verify the signatures. In most
 cases, symmetric keys are being used and require some key
 exchange. Expecting the dCDN caches to implement every method
 used by commercial CDNs is problematic, and sharing of content
 provider keys is unlikely.

 * Token based authentication: Some CPs and CDNs are using token
 based client / session authentication. The token is passed
 either as a URI query parameter or as a cookie. The dCDN / ISP
 cannot implement the token validation, as it has no knowledge
 of the identity and validation methods used by the CP / uCDN.
 Also, if using cookies with HTTP redirect, the cookie will be
 omitted after the redirect, so a solution for cookie based
 authentication is necessary.

Finkelman & Mishra Expires May 3, 2018 [Page 11]

Internet-Draft CDNI SVA Extensions October 2017

 * CORS delegation: CORS may also be a use case of split
 authentication, see explanation in the CORS delegation section.

 Proposal

 Split authentication is a mechanism that leverages the fact
 that video sessions are very long and chunked into very small
 requests, comparing the overall session time and volume. The
 dCDN cache relays the authentication verification to the uCDN
 by sending the uCDN a HEAD request for every new session. The
 dCDN cache saves the session state for some time and uses it
 for subsequent requests of the same session.

 As this is a general problem when delegating traffic between
 CDNs, and in-fact, can become a blocker for CDNI deployments.
 We propose to consider this concept for the general CDNI use
 case, and draft it for RFC.

 The following diagram gives a high level sequence view of the URI
 signing use case.

 +------+ +------+ +------+ +-----+
 |Client| |dCDN | |uCDN | | CP |
 | | | | | | | |
 +---+--+ +---+--+ +---+--+ +--+--+
 | | | |
 +----------------+ | | |
 |Access video on | | | |
 |CP web site | | | |
 +-------+--------+ | | |
 | Get master manifest location | |
 +-----------------+----------------------+----------------->
 | |Respond with signed URI to manifest |
 <--+-----------------+
 | Get manifest | | |
 +--> |
 | | | | |
 | | +-------+----------+ |
 | | |Verify URI signing| |
 | | +-------+----------+ |
 | | Redirect to dCDN | |
 <--+ |
 | Get manifest | | |
 +-----------------> | |
 | |Authenticate URI | |
 | +----------------------> |
 | |Authentication success| |
 | Master manifest <----------------------+ |

Finkelman & Mishra Expires May 3, 2018 [Page 12]

Internet-Draft CDNI SVA Extensions October 2017

 <-----------------+ | |
 | Get sub manifest| | |
 +-----------------> | |
 | |Authenticate URI | |
 | +----------------------> |
 | |Authentication success| |
 | <----------------------+ |
 | | | | |
 | +------------------+ | |
 | |Save authenticated| | |
 | |session token | | |
 | +--------+---------+ | |
 | Sub manifest | | |
 <-----------------+ | |
 | Request chunk 1 | | |
 +-----------------> | |
 | | | | |
 | +---------------------+ | |
 | | Use session state to| | |
 | | authenticate client | | |
 | | chunk requests | | |
 | +----------+----------+ | |
 | chunk 1 | | |
 <-----------------+ | |
 |-Request chunk 2-> | |
 <------chunk 2----| | |
 |-Request chunk 3-> | |
 <------chunk 3----+ | |
 | | | |
 + + + +
 Figure 1

5. CORS delegation

 CORS (Cross Origin Resource Sharing) is a mechanism designed to allow
 a resource from domain A to access other resources in domain B,
 overriding the same-origin policy. When a uCDN delegate traffic to a
 dCDN (or ISP) the dCDN is required to comply with the same CORS
 server behavior the uCDN would have had. For example, if a resource
 from domain A is accessible for request coming from a resource domain
 B, but not accessible to requests coming from a resource of domain C,
 the same logic must be done by the dCDN.

 Though CORS can possibly be handled by simply echoing the Origin
 header value, or *, back to the client, in some cases it is not
 sufficient, and it also breaks the concept of CORS as an access
 control mechanism. As proper CORS handling is not possible without a

Finkelman & Mishra Expires May 3, 2018 [Page 13]

Internet-Draft CDNI SVA Extensions October 2017

 delegation scheme, the Open Caching working group sees it as an
 essential part of inter-CDN delegation, and therefore propose to
 adopt it under CDNI and draft it for CDNI RFC.

 Use cases

 * A simple use case example is a when resource from Origin:
 www.video.example.com points to the media file on domain:
 www.cdn.com. The uCDN is supposed to deliver the content if
 the Origin is video.example.com otherwise it should be
 rejected. In this case, for a request header "Origin:
 www.video.example.com" the CDN should reply with "Access-
 Control-Allow-Origin: www.video.example.com". OTOH, if the
 origin is www.video.other.com then the CDN should not allow it
 by omitting the ACAO header. When delegating the session to a
 dCDN cache, it should maintain the same behavior.

 Proposals

 There are several alternatives for the dCDN / ISP cache to learn
 the allowed origins for a content item.

 1. Caching: Caching of CORS headers per content. If the cache
 receives a request using an origin it does not already approve
 for that content, the cache sends a HEAD request to the CDN
 with the client’s CORS request headers. The cache saves the
 response information in a content database and uses it for
 subsequent requests for the same content. .

 2. Metadata: the uCDN can provide the dCDN the metadata referring
 the content of a specific domain. This metadata holds, for
 example, all the information required to take CORS decisions
 at the Open Cache.

 3. Split authentication: Using split authentication, the dCDN
 cache can send the CORS headers to the uCDN in the initial
 session request, the uCDN responds to the CORS request
 properly, the dCDN forwards the CORS response to the client
 and caches it for rest of the client session.

 The following diagram gives a high level sequence view of CORS
 delegation from uCDN to dCDN using the CORS caching alternative.

Finkelman & Mishra Expires May 3, 2018 [Page 14]

Internet-Draft CDNI SVA Extensions October 2017

 +------+ +------+ +------+ +-----+
 +-|Client| |dCDN | | uCDN | | CP |
 | |1 | | | | B | | A |
 |2+---+--+ +---+--+ +---+--+ +--+--+
 +--+--|+ | | |
 +-------+-------------+ | | |
 |Access resource on CP| | | |
 |www.example.com | | | |
 +-------+-------------+ | | |
 | | Get resource A from example.com | |
 | +-----------------+----------------------+----------------->
 | | CP resource A points to a resource B on uCDN cdn.com |
 | <--+-----------------+
 | | Get B from uCDN ucdn.com | |
 | | Origin: example.com | |
 | +--> |
 | | | | | |
 | | | +----------+-----------+ |
 | | | |uCDN Delegate to dCDN | |
 | | | +----------+-----------+ |
 | | | Redirect to dCDN | |
 | <--+ |
 | |Get B from dCDN | | |
 | |Origin: example.com | |
 | +-----------------> | |
 | | | Request CORS for B | |
 | | | Origin: example.com | |
 | | +----------------------> |
 | | | Provide CORS for B | |
 | | | Origin: example.com | |
 | | <----------------------+ |
 | | +--------+-----------+ | |
 | | + cache B CORS rules | | |
 | | + Origin: example.com| | |
 | | +--------+-----------+ | |
 | | Provide B with | | |
 | | CORS headers | | |
 | <-----------------+ | |
 | Get B from uCDN ucdn.com | |
 | Origin: example.com | |
 |---> |
 | | | | | |
 | | | +----------+-----------+ |
 | | | |uCDN delegate to dCDN | |
 | | | +----------+-----------+ |
 | | | Redirect to dCDN | |
 <---+ |
 | Get B from dCDN | | |

Finkelman & Mishra Expires May 3, 2018 [Page 15]

Internet-Draft CDNI SVA Extensions October 2017

 | Origin: example.com| | | |
 |--------------------> | |
 | | +--------+-----------+ | |
 | | + use B cached CORS | | |
 | | + Origin: example.com| | |
 | | +--------+-----------+ | |
 | | Provide B with | | |
 | | CORS headers | | |
 <--------------------+ | |
 + + + + +
 Figure 2

 In the above simplified example, we depict the caching alternative
 for CORS solution.

 Client 1 accesses resource A on CP domain example.com. Resource A,
 refers client 1 to resource B on uCDN ucdn.com. Without delegation,
 at this points uCDN has to resolve CORS and decide if a resource from
 example.com is allowed to access a resource at ucdn.com. However,
 once delegated to dCDN, it becomes the dCDNs duty to resolve it for
 the client request arrives at the dCDN cache. The dCDN sends a CORS
 request to the uCDN, for resource B with origin example.com, it then
 uses the response to respond to client 1, and caches the response.
 When client 2’s request arrives at the dCDN, the required CORS
 information is already in cache and the dCDN can serve client 2
 without reiterating to uCDN.

 For simplicity, in this diagram, we have ignored some of the
 challenges of CORS delegation like preflight requests and "null"
 origin after HTTP redirect.

6. Logging

 This section outlines creation of service delivery logs at the dCDN
 (ISP) and transmittal of the logs by the dCDN to the uCDN. The key
 motivation for logging outlined below as compared to CDNI Logging
 Interface [RFC7937] is the ability for dCDN and uCDN to negotiate and
 agree on a log transport mechanism.

 The logging mechanism provides the flexibility for CDNs to leverage
 common transport mechanism in-use already. Second, the open caching
 working group has selected Squid based file format given its wide
 usage within the CDN environments for access and cache logs, result
 codes and error messages. As an example, the result codes in squid
 return both the status code returned by downstream as well as result
 code indicator such as HIT, MISS, REFRESH_HIT, etc. Between the two
 statuses, it is easier to discern the delivery status. As an
 example, if the request was forbidden by the origin, the status field

Finkelman & Mishra Expires May 3, 2018 [Page 16]

Internet-Draft CDNI SVA Extensions October 2017

 will likely be MISS/403 or if it is a cache error response, it will
 be HIT/503. So, leveraging the Squid log already in use within the
 CDN environment and, equally important, the ability for CDNs to
 negotiate and agree on a file transport mechanisms, were the key
 motivations for open caching. These are therefore proposed as
 complementary extensions to the CDNI Logging Interface [RFC7937].

 The sub-sections below explain extensions to the Footprint and
 Capabilities [RFC8008] and Metadata Interface [RFC8006]. The
 specific extension includes FCI announcement of supported log file
 transport types by dCDN and metadata response by uCDN to provision
 one or more log file types from the list sent by the dCDN.

 Use cases

 * Transport: Delivery logs are to be supplied by the dCDN to the
 uCDN via a transport mechanism of choice, supported by both
 dCDN and uCDN.

 * Record format: Log record format is advertised by the dCDN and
 interpreted correctly by the uCDN. The dCDN in this case shall
 announce to uCDN one or more transport format that it supports.
 The uCDN, in turn, will select one format from the potential
 candidates and set up a provisioning process.

 * Log destination: The uCDN configures a log receiving system
 tied to a specific delivery service it has delegated to a dCDN.
 The uCDN will provision log destination at its end where it
 will route the returned logs by delivery service associated
 with the log file.

 The diagram below illustrates the use cases:

Finkelman & Mishra Expires May 3, 2018 [Page 17]

Internet-Draft CDNI SVA Extensions October 2017

 Delivery Service A (VOD) Delivery Service C RR Logs
 Delivery Service B (Live) (Linear)
 +----------------------+ +-----------------+ +-----------------+
 | | | | | |
 |Log Destination 1(VOD)| |Log Destination 2| |Log Destination 3|
 | Logstash | | Kafka | | SFTP |
 | | | | | |
 +------------^---------+ +----------^------+ +----------^------+
 | | |
 | | |
 +--+
 uCDN |
+--+
 dCDN |
 Delivery Logs +----------+-------+
 Service A/B/C | |
 +-------+--------+-----> | RR Logs
 | | | | dCDN Open Cache <-----------+
 | | | | Controller | |
 +----+-----+ | | | | |
 | | | | +-------^-------+--+ |
 | +--+-+----+ | | ^ +----+-----+
 | | | | +---+----+ | | Request |
 | | +--+---+--+ | | | | Router |
 | | | | | +--+--+-+ | |
 +-------+ | | | | | +----------+
 +------+ Cache | | | Cache |
 | | +-----+ |
 +---------+ +-------+
 Figure 3

 Proposal

 Delivery logs are created and then transferred from log producing
 entities at the dCDN premises (mainly caches and Request Router) to
 log destinations at the uCDN premises. The dCDN may offload logs
 from these entities to logging at the dCDN premises to facilitate log
 transfers, or, logs may be transferred directly from log producing
 entities to uCDN.

 Various transport mechanisms may suit the use case of transferring
 log data, for example SFTP, HTTP upload, Kafka, Logstash or other
 methods as per the agreement between a dCDN and a uCDN.

 In compliance with the CDNI Footprint and Capabilities Interface, and
 therefore, as per the above use cases, the dCDN is responsible to
 advertise supported Logging "record-types", as well as Logging

Finkelman & Mishra Expires May 3, 2018 [Page 18]

Internet-Draft CDNI SVA Extensions October 2017

 "fields" which are marked as optional for the s pecified "record-
 types" as defined by the CDNI "Logging Capability Object".

 The CDNI Logging Capability Object is extended to contain additional
 properties that hold information on record format, such as fields
 that should be obfuscated by the dCDN. Note that the uCDN can
 further control field obfuscation when configuring a logging
 integration.

 During provisioning process the dCDN may reject configuration if a
 selected record format is not available for a selected Log
 Integration Type.

6.1. FCI extension for Logging

 This is a proposal of a Logging Capability object that extends the
 CDNI "FCI.Logging" object.

 The following shows an example of Logging Capability object
 serialization, for a dCDN that supports the optional fields
 "hostname" and "cache-key", for the "oc_http_request_v1" record type.
 The "client-address" field is hashed.

 In this example, the logging integration types that are supported are
 named "kafka" and "logstash"

Finkelman & Mishra Expires May 3, 2018 [Page 19]

Internet-Draft CDNI SVA Extensions October 2017

 {
 "capabilities": [
 {
 "capability-type": "FCI.Logging",
 "capability-value": {
 "transport-types": [
 "kafka",
 "logstash"
],
 "record-type": "oc_http_request_v1",
 "fields": [
 "hostname",
 "cache-key"
],
 "hash-fields": [
 "client-address"
]
 },
 "footprints": [
 <footprint-objects>
]
 }
]
 }

6.2. Metadata Interface extension for Logging

 This is a proposal of Logging Metadata and Transport Metadata objects
 that comply with the CDNI "Service Metadata" interface

6.2.1. Logging Configuration object

 The following shows an example of Logging Configuration MI.Logging
 Metadata object serialization, for a logging integration that
 includes the optional field "hostname" in the log record.

Finkelman & Mishra Expires May 3, 2018 [Page 20]

Internet-Draft CDNI SVA Extensions October 2017

 {
 "metadata": [
 {
 "generic-metadata-type": "MI.Logging",
 "generic-metadata-value": {
 "include-fields": [
 "hostname"
]
 },
 "footprints": [
 <footprint-objects>
]
 }
]
 }

6.2.2. Transport Configuration object

 An initial set of logging transport types and their respective
 configuration objects should be defined. More types can be added in
 the future as needed. The following shows an example of Transport
 Configuration MI.LoggingTransport Metadata object serialization, for
 a "kafka" logging integration type.

 {
 "metadata": [
 {
 "generic-metadata-type": "MI.LoggingTransport",
 "generic-metadata-value": {
 "type": [
 "kafka",
],
 "config":
 <kafka-integration-config-object>
]
 },
 "footprints": [
 <footprint-objects>
]
 }
]
 }

Finkelman & Mishra Expires May 3, 2018 [Page 21]

Internet-Draft CDNI SVA Extensions October 2017

7. IANA Considerations

7.1. CDNI Payload Types

 This document requests the registration of the following CDNI Payload
 Types under the IANA CDNI Payload Type registry [RFC7736]:

 +--------------------------+---------------+
 | Payload Type | Specification |
 +--------------------------+---------------+
 | FCI.RequestRouterAddress | RFCthis |
 | MI.FallbackAddress | RFCthis |
 | MI.Logging | RFCthis |
 | MI.LoggingTransport | RFCthis |
 +--------------------------+---------------+

 [RFC Editor: Please replace RFCthis with the published RFC number for
 this document.]

7.1.1. CDNI FCI RequestRouterAddress Payload Type

 Purpose: The purpose of this payload type is to distinguish
 RequestRouterAddress FCI objects (and any associated capability
 advertisement)

 Interface: FCI

 Encoding: see Section 2.1

7.1.2. CDNI MI FallbackAddress Payload Type

 Purpose: The purpose of this payload type is to distinguish
 FallbackAddress MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 2.2

7.1.3. CDNI MI Logging Payload Type

 Purpose: The purpose of this payload type is to distinguish Logging
 MI objects (and any associated capability advertisement)

 Interface: MI/FCI

 Encoding: see Section 6.2.1

Finkelman & Mishra Expires May 3, 2018 [Page 22]

Internet-Draft CDNI SVA Extensions October 2017

7.1.4. CDNI MI LoggingTransport Payload Type

 Purpose: The purpose of this payload type is to distinguish
 LoggingTransport MI objects (and any associated capability
 advertisement)

 Interface: MI/FCI

 Encoding: see Section 6.2.2

8. Security Considerations

 TBD.

9. Acknowledgements

 The authors would like to thank Kevin J. Ma for his guidance and
 support.

10. Contributors

 The authors would like to thank all members of the SVA’s Open Caching
 Working Group for their contribution in support of this document.

11. References

11.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

Finkelman & Mishra Expires May 3, 2018 [Page 23]

Internet-Draft CDNI SVA Extensions October 2017

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <https://www.rfc-editor.org/info/rfc5952>.

 [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", RFC 6707, DOI 10.17487/RFC6707, September
 2012, <https://www.rfc-editor.org/info/rfc6707>.

 [RFC7336] Peterson, L., Davie, B., and R. van Brandenburg, Ed.,
 "Framework for Content Distribution Network
 Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,
 August 2014, <https://www.rfc-editor.org/info/rfc7336>.

 [RFC7937] Le Faucheur, F., Ed., Bertrand, G., Ed., Oprescu, I., Ed.,
 and R. Peterkofsky, "Content Distribution Network
 Interconnection (CDNI) Logging Interface", RFC 7937,
 DOI 10.17487/RFC7937, August 2016,
 <https://www.rfc-editor.org/info/rfc7937>.

 [RFC8006] Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,
 "Content Delivery Network Interconnection (CDNI)
 Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,
 <https://www.rfc-editor.org/info/rfc8006>.

 [RFC8007] Murray, R. and B. Niven-Jenkins, "Content Delivery Network
 Interconnection (CDNI) Control Interface / Triggers",
 RFC 8007, DOI 10.17487/RFC8007, December 2016,
 <https://www.rfc-editor.org/info/rfc8007>.

Finkelman & Mishra Expires May 3, 2018 [Page 24]

Internet-Draft CDNI SVA Extensions October 2017

 [RFC8008] Seedorf, J., Peterson, J., Previdi, S., van Brandenburg,
 R., and K. Ma, "Content Delivery Network Interconnection
 (CDNI) Request Routing: Footprint and Capabilities
 Semantics", RFC 8008, DOI 10.17487/RFC8008, December 2016,
 <https://www.rfc-editor.org/info/rfc8008>.

11.2. Informative References

 [RFC7736] Ma, K., "Content Delivery Network Interconnection (CDNI)
 Media Type Registration", RFC 7736, DOI 10.17487/RFC7736,
 December 2015, <https://www.rfc-editor.org/info/rfc7736>.

Authors’ Addresses

 Ori Finkelman
 Qwilt
 6, Ha’harash
 Hod HaSharon 4524079
 Israel

 Phone: +972-72-2221647
 Email: orif@qwilt.com

 Sanjay Mishra
 Verizon
 13100 Columbia Pike
 Silver Spring, MD 20904
 USA

 Email: sanjay.mishra@verizon.com

Finkelman & Mishra Expires May 3, 2018 [Page 25]

