VEBPUSH E. Damaggi o

I nternet-Draft B. Raynor
| nt ended status: Standards Track M crosoft
Expires: Septenber 7, 2015 March 6, 2015

Generic Event Delivery Using HTTP Push
dr af t - damaggi o- webpush- ht t p2- 00

Abstract

A sinple protocol for the delivery of realtine events to user agents
is described. This scheme uses HITP/ 2 server push.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I1ETF). Note that other groups nay al so distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi mum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft wll expire on Septenber 7, 2015.
Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 1]

| nt er net - Draf t HTTP Web Push March 2015

Tabl e of Contents

1. Introduction . 2
1.1. Conventions and Ternlnology . 4
2. Overview . . 5
2.1. HITP Resources 6
3. Registration 6
4. Subscribing . . . 6
5. Requesting Push Nbssage Dellvery .o 7
5.1. Requesting Push Message Receipts 8
6. Receiving Push Messages . . C e e e e e 9
6.1. Acknow edgi ng Push Nbssage Recelpts . ¢
7. Operational Considerations . . . e I
7.1. Load Managenent . . . S |
7.2. Push Message Explratlon A
7.3. Subscription Expiration . . . 74
7.4. Inplications for Application Rellablllty e %2
8. Security Considerations . . .)
8.1. Confidentiality from Push SerV|ce Access N
8.2 Privacy Considerations 13
8.3 Aut hori zation . . . P
8.4 Deni al of Service CDnS|derat|ons . e 15
8.5. Logging Risks .. 15
9. |ANA Considerations .. 15
10. Acknow edgements 17
11. References . . . e
11.1. Normative References e I
11.2. Informative References 18
Aut hors’ Addresses . 18

1. I nt roducti on

Many applications on nobile and enbedded devi ces require continuous
access to network conmmunications so that real-tine events - such as
incomng calls or nessages - can be conveyed (or "pushed") in a
tinmely fashion.

Mobi | e and enbedded devices typically have |imted power reserves, SO
finding nore efficient ways to serve application requirenents greatly
benefits the application ecosystem One significant contributor to
power usage is the radio. Radio comrunications consunme a significant
portion of the energy budget on a wirelessly connected device.

Uncoor di nat ed use of persistent connections or sessions can
contribute to unnecessary use of the device radio, since each

i ndependent session i ndependently incurs overheads. |In particular,
keep alive traffic used to ensure that m ddl eboxes do not prematurely
time out sessions, can result in significant waste. Mintenance

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 2]

| nt er net - Draf t HTTP Web Push March 2015

traffic tends to dom nate over the long term since events are
relatively rare.

Consolidating all real-tine events into a single session ensures nore
efficient use of network and radio resources. A single service
consolidates all events, distributing those events to applications as
they arrive. This requires just one session, avoiding duplicated
over head costs.

A push server that does not support reliable delivery over
intermttent network connections or failing applications on devices,
forces the device to acknow edge receipt directly to the application
server, incurring additional power drain in order to establish
(usual |y secure) connections to the individual application servers.

Wiile reliability is not required for nmessages that expire in few
seconds (e.g. an incomng call) or collapsible ones (e.g. the current
nunber of unread emails), it is nore inportant when nessages contain
information that is longer lasting, e.g. a command to update a
configuration value, or the acknow edgenent of a financial

transaction or workflow step. In particular, in the case of power-
constrai ned devices, it is preferable to transmt the actual
information in the "pushed" nessage reliably, instead of forcing them
to reconnect periodically to get the current state.

An open standard to "push" nessages to enbedded and nobil e devices:

o Sinplifies deploynment of "push" features across a variety of
nmobi | e and enbedded device pl atforns

o0 Creates an ecosystem of services (e.g. consolidation services) and
devel opnment tools enabling efficient "push”

o Technically enables consolidating real-tinme events into a single
sessi on which is inpossible when each "push" inplenentation is
built in isolation

There are two primary scenari os under consideration:

o Wb applications in a nobile user agent and

o Enbedded devi ces receiving push nessages from cl oud services
through an internediate "field gateway", i.e. a reasonably

power ful device (capable of secure HTTP/ 2 conmuni cations), which
acts as a | ocal agent.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 3]

| nt er net - Draf t HTTP Web Push March 2015

The WBC Web Push APl [API] describes an APl that enables the use of a
consol i dat ed push service fromweb applications. This expands on
that work by describing a protocol that can be used to:

0 request the delivery of a push nessage to a user agent,
0 create new push nessage delivery subscriptions, and
o nonitor for new push nessages.

Requesting the delivery of events is particularly inportant for the
Web Push API. The registration, managenent and nonitoring functions
are currently fulfilled by proprietary protocols; these are adequate,
but do not offer any of the advantages that standardi zation affords.

In the enbedded field gateway scenario, small (possibly much | ess
capabl e devices) connect to a field gateway to receive push nessages.
Thi s protocol does not detail the device-to-field gateway connection,
instead it details how the field-gateway can efficiently receive push
nmessages on behal f of many devi ces.

Thi s docunent intentionally does not describe how a push service is
di scovered. Discovery of push services is left for future efforts,
if it turns out to be necessary at all. User agents are expected to
be configured with a URL for one (or nore) push services.

1.1. Conventions and Term nol ogy

I n cases where nornmative | anguage needs to be enphasized, this

docunent falls back on established shorthands for expressing

interoperability requirenments on inplenmentations: the capitalized

words "MJST", "MJIST NOT", "SHOULD' and "MAY". The neani ng of these

is described in [RFC2119].

Thi s docunent defines the foll ow ng terns:

application: Both the sender and ultimate consuner of push nessages.
Many applications have conponents that are run on a user agent and
ot her conponents that run on servers.

application server: The conponent of an application that runs on a
server and requests the delivery of a push nessage.

push nessage: A nessage, sent froman application server to a user
agent via a push service.

push service: A service that delivers push nessages to user agents.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 4]

| nt er net - Draf t HTTP Web Push March 2015

subscription: A nessage delivery context that is established between
t he user agent and the push service and shared with applications.
Al'l push nmessages are associated with a subscription.

user agent: A device and software that is the recipient of push
nmessages.

Exanples in this docunent use the HTTP/ 1.1 nessage format [RFC7230].
Many of the exchanges can be conpl eted using HTTP/ 1.1, where HITP/ 2
i s necessary, the nore verbose frame format from
[I-D.ietf-httpbis-http2] is used.

2. Overvi ew

A general nodel for push services includes three basic actors: a user
agent, a push service, and an application (server).

I
fome oo + o + oo e o +

|
| Push Message R |
| mmmme e | |

At the very beginning of the process, a new subscription is created
by the user agent and then distributed to an application server. The
subscription is the basis of all future interactions between the user
agent and push service.

It is expected that a different subscription will be provided to each
application; however, there are no inherent cardinality constraints
in the protocol. Miltiple subscriptions mght be created for the

same application, or nultiple applications could use the sane
subscription. Note however that sharing subscriptions can have
security and privacy inplications.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 5]

| nt er net - Draf t HTTP Web Push March 2015

Application servers use subscriptions to deliver push nessages to
user agents, via the push service.

Subscriptions have a limted lifetime. They can also be term nated
by either push service or user agent at any tine. User agents and
application servers need to be prepared to nanage changes in
subscription state.

2. 1. HTTP Resources

Thi s protocol uses HTTP resources [RFC7230] and link relations
[RFC5988]. The follow ng resources are defined:

push service: This resource is used in Subscribing (Section 4). It
is configured into user agents.

subscription: A link relation of type "urn:ietf:parans: push" refers
to a subscription resource. Subscription resources are used to
deliver push nmessages. An application server sends push nessages
(Section 5) and a user agent receives push nessages (Section 6)
using this resource.

receipt: Alink relation of type "urn:ietf:parans: push:receipt”
refers to a delivery receipt resource. An application server
receives delivery confirmation (Section 5.1) for push nessages
using this resource.

3. Registration
The Regi stration and Subscribe resources referenced in
[I-D.draft-thonson-webpush-http2-02] were deprecated to elimnate the
over head of mmintaining registration-subscription relationships in
t he push server

4. Subscri bing

A user agent sends a POST request to its configured push service
resource to create a new subscription

POST /subscribe/ HITP/ 1.1
Host: push. exanpl e. net

A response with a 201 (Created) status code includes a URI for the
subscription in the Location header field.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 6]

| nt er net - Draf t HTTP Web Push March 2015

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:52 GVl
Li nk: </ p/LBhhwOOohO W 4G 971UGsB7sdQGUI bx>;
rel ="urn:ietf:parans: push”
Location: https://push. exanpl e. net/ p/ LBhhwOOohO W 4Q 971UGsB7sdQGUI bx
Cache-Control : max-age: 864000, private

The user agent should securely distribute the "subscription" resource
to its application server. (Details are outside the scope of this
docunent .)

5. Requesting Push Message Delivery

An application server requests the delivery of a push nessage by
sendi ng an HTTP POST request to the "subscription” resource
distributed by its user agent. The push nessage is included in the
body of the request.

The push nmessage is a JSON [RFC7159] object which contains the push
nmessage data and directives for the push server:

nessage opt i onal A JSON object that contains push
nessage data

A JSON bool ean i ndi cating whet her
the application server requests a
confirmati on that the push nessage
was delivered to the user agent. Its

I

I

request receipt |
I

|

I

default value is fal se. |
I

I

I

|

I

I

opt i onal

time_to live opt i onal A JSON nunber that represents the
expiration time in seconds for a
push nmessage. It is relative to the
time that the push server receives
the request. A nessage MJST NOT be

delivered after it expires.

Tabl e 1. Push Message Request For mat

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 7]

| nt er net - Draf t HTTP Web Push March 2015

PCST / p/ LBhhwOOohO W 4G 971UGsB7sdQGUI bx HTTP/ 1.1
Host: push. exanpl e. net

Cont ent - Type: application/json

Cont ent - Lengt h:

{
"request _receipt": true,
"message": {"data": "Hello World"}

A response with a 201 (Created) status code includes a URI for the
nmessage in the Location header field. This does not indicate that
t he nessage was delivered to the user agent. |If a receipt was
requested, then a URI for the receipt resource is included in the
Li nk header field in the response.

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:55 GMI
Li nk: </r/LBhhwOOohO W 40 971UGsB7sdQGUI bx/ ;
rel ="urn:ietf:parans: push:receipt”
Cache-Control : max-age=600
Location: https://push. exanpl e. net/p/ LBhhwOOohO W 4Q 971UGsB7sdQGUI bx/ i d

A push server MJST return a 400 (Bad Request) status code in response
to a POST request that contains malfornmed JSON in the body.

[Shoul d the push server return a 400 if the requested tinme to |ive
exceeds its storage limts?]

A push service MAY generate a 413 (Payl oad Too Large) status code in
response to POST requests that include an entity body that is too

| arge. Push services MJST NOT generate a 413 status code in
responses to an entity body that is 4k (4096 bytes) or less in size.

5.1. Requesting Push Message Receipts

The application server MAY request to be notified by the push server
when a push nmessage has been successfully delivered to the user
agent .

To request a receipt, the application server sets the value of the
push nessage request_recei pt nenber to true in the HITP POST request
to the "subscription"” resource.

The application server requests the delivery of receipts fromthe

push server by nmeking a HTTP CET request to the "recei pt" resource.
The push service does not respond to this request, it instead uses

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 8]

| nt er net - Draf t HTTP Web Push March 2015

HTTP/ 2 server push [I-D.ietf-httpbis-http2] to send the content of
push recei pts when nessages are acknow edged by the user agent.

[Details on the nessage format for push receipt responses is TBD

The push server MJST generate a 504 (Gateway Tineout) if the user
agent fails to acknow edge the recei pt of the push nessage or the
push server fails to deliver the nessage prior to its expiration.

6. Receiving Push Messages

A user agent requests the delivery of new push nessages by nmaking a
CGET request to the "subscription" resource. The push service does
not respond to this request, it instead uses HITP/ 2 server push
[I-D.ietf-httpbis-http2] to send the contents of push nessages as
they are sent by application servers.

Each push nessage is pushed in response to a synthesized GET request.
The GET request is nmade to the "subscription” resource. The response
body is the entity body fromthe nost recent POST request sent to the
"subscription” resource by the application server.

The foll ow ng exanple request is nmade over HITP/ 2.

HEADERS [stream 7] +END_STREAM +END_ HEADERS
: met hod = CGET
s path = [/ p/ LBhhwOOohO W 4G 971UGsB7sdQGUI bx

cauthority push. exanpl e. net

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 9]

| nt er net - Draf t HTTP Web Push March 2015

The push service permts the request to remain outstanding. Wen a
push nessage is sent by an application server, a server push is
associated with the initial request. The response includes the push
nessage.

PUSH PROM SE [stream 7; prom sed stream 4] +END_HEADERS

: met hod = CGET
:path = /[p/ LBhhwOGohO W 40 971UGsB7sdQGUi bx/ i d
cauthority = push. exanpl e. net
HEADERS [stream 4] +END HEADERS
»status = 200
dat e Thu, 11 Dec 2014 23:56:55 GVl

| ast-nodifi ed Thu, 11 Dec 2014 23:56:55 GMI

cache-control private
content-type
content-1length

DATA [stream 4] +END_STREAM

{ /] JSON vject // }

A user agent m ght receive a PUSH PROM SE for a resource for which it
has no active subscription. The resulting unwanted push nessage can
be ignored, or the correspondi ng stream can be reset (using
RST_STREAM to avoid expendi ng bandw dt h.

A user agent can request the contents of the "subscription” resource
i medi ately by including a Prefer header field [RFC7240] with a
"wait" paraneter set to "0". The push server SHOULD return a |ink
reference to the "subscription” resource and expiration information
in response to this request. This request also triggers the delivery
of all push nessages that the push service has stored but not yet
delivered. The server MJST generate a server push for all stored
nessages that have not yet been delivered.

Di fferent collapsing or coal escing disciplines for nessages are
possi bl e but outside the scope of this docunent.

6.1. Acknow edgi ng Push Message Recei pts
To enable "at | east once delivery", the user agent MJST acknow edge
recei pt of the nessage by perform ng a HITP DELETE on the resource in
t he : path pseudo-header field fromthe PUSH PROM SE.

DELETE / p/ LBhhwOOohO- W 40 971UGsB7sdQGUI bx/id HTTP/ 1.1
Host: push. exanpl e. net

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 10]

| nt er net - Draf t HTTP Web Push March 2015

If the application has requested a delivery receipt, the push server
MUST deliver a response to the application server nonitoring the
"recei pt" resource.

7. QOperational Considerations

[No changes to [I-D.draft-thonmson-webpush-http2-02]]
7.1. Load Managenent

[No changes to [I-D.draft-thonmson-webpush-http2-02]]
7.2. Push Message Expiration

[This section from[I-D.draft-thonson-webpush-http2-02] was updated
to include the tine_to |ive option.]

Push services typically store nessages for sone tine to allow for
l[imted recovery fromtransient faults. |f a push nessage is stored,
but not delivered, the push service can indicate the probable
duration of storage by including expiration information in the
response to the push request.

A push service is not obligated to store nessages indefinitely. If a
user agent is not actively nonitoring for push nessages, those
nmessages can be | ost or overridden by newer nessages on the sane
subscri ption.

Push nessages that were stored and not delivered to a user agent are
del i vered when the user agent recommences nonitoring. (A nessage
with a time_to_live option MJUST NOT be delivered once it expires.)
Stored push nessages SHOULD include a Last-Mdified header field (see
Section 2.2 of [RFC7232]) indicating when delivery was requested by
an application server.

A CGET request to a "subscription"” resource that has expired nessages
results in a 204 (No Content) status response, equivalent to if no
push nessage were ever sent.

Push services mght need to limt the size and nunber of stored push
messages to avoid overloading. |In addition to using the 413 (Payl oad
Too Large) status code for too | arge push nessages, a push service
MAY expire push nessages prior to any advertised expiration tinmne.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 11]

| nt er net - Draf t HTTP Web Push March 2015

7.3. Subscription Expiration

[Mnor editorial changes to [I-D.draft-thonson-webpush-http2-02] to
renmove references to registration]

In sone cases, it nmay be necessary to term nate subscriptions so that
t hey can be refreshed.

A push service mght choose to set a fixed expiration tinme. |If a
resource has a known expiration tinme, expiration information is
included in responses to requests that create the resource, or in
requests that retrieve a representation of the resource.

Expiration is indicated using either the Expires header field, or by
setting a "max-age" paranmeter on a Cache-Control header field (see

[RFC7234]). The Cache-Control header field MJUST al so include the
“private" directive.

A push service can invalidate a subscription at any tine. |[If a user
agent has an outstanding request to the "subscription"” resource, this
can be signaled by returning a 400-series status code, such as 410
(Gone). A push service uses server push to indicate that a
subscription has expired; a pushed 400-series status code for the
subscription resource signals the term nation of a subscription.

A user agent can request that a subscription be renoved by sending a
DELETE request to the correspondi ng UR

A push service MJIST send a 400-series status code, such as 404 (Not
Found) or 410 (Gone) if an application server atttenpts to send a
push nessage to a renoved or expired subscription.

7.4. Inplications for Application Reliability

[This section from[Il-D.draft-thonson-webpush-http2-02] was updated
to include receipts.]

The availability of push nessage delivery receipts in the protocol
ensures that the application devel oper is not tenpted to create
alternative nechanisns for nessage delivery in case the push service
fails to deliver a critical nessage. Setting up a polling nechani sm
or a backup nessagi ng channel in order to conpensate for these
shortcom ngs negates al nost all of the advantages a push service
provi des.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 12]

| nt er net - Draf t HTTP Web Push March 2015

8.

8.

8.

Security Consi derations

[Mnor editorial changes throughout Section 8 to
[1-D.draft-thonson-webpush-http2-02] to renove references to
regi stration]

This protocol MJST use HITP over TLS [RFC2818]; this includes any
communi cati ons between user agent and push service, plus
comuni cati ons between the application and the push service. Thus,
all URIs use the "https" schenme. This provides confidentiality and
integrity protection for subscriptions and push nessages from
external parties.

1. Confidentiality from Push Service Access

The protection afforded by TLS does not protect content fromthe push
service. Wthout additional safeguards, a push service is able to
see and nodify the content of the nessages.

Applications are able to provide additional confidentiality,
integrity or authentication mechanisnms within the push nessage
itself. The application server sending the push nessage and the
application on the user agent that receives it are frequently just
different instances of the sane application, so no standardi zed
protocol is needed to establish a proper security context. The
process of providing the application server with subscription

i nformati on provi des a conveni ent nmedi um for key agreenent.

The Web Push APl codifies this practice by requiring that each push
subscription created by the browser be bound to a browser generated
encryption key. Pushed nessages are authenticated and decrypted by
the browser before delivery to applications. This schene ensures
that the push service is unable to exam ne the contents of push
nessages.

The public key for a subscription ensures that applications using

t hat subscription can identify messages from unknown sources and

di scard them This depends on the public key only being disclosed to
entities that are authorized to send nessages on the channel. The
push server does not require access to this public key.

2. Privacy Considerations
Push nmessage confidentiality does not ensure that the identity of who

i's communi cating and when they are comuni cating is protected.
However, the amount of information that is exposed can be limted.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 13]

| nt er net - Draf t HTTP Web Push March 2015

Subscription URIs MIUST NOT provide any basis to correlate

communi cations for a given user agent. It MJST NOT be possible to
correlate any two subscription URIs based solely on the content of
the subscription URIs. This allows a user agent to control
correlation across different applications, or over tine.

In particular, user and device informati on MUST NOT be exposed
t hr ough the subscription URI

In addition, subscription URIs established by the same user agent
MJUST NOT i nclude any information that allows themto be correl ated
with the associ ated user agent.

Note: This need not be perfect as long as the resulting anonymty
set (see [RFC6973], Section 6.1.1) is sufficiently large. A
subscription URI necessarily identifies a push service or a single
server instance. It is also possible that traffic analysis could
be used to correl ate subscri ptions.

A user agent MJST be able to create new subscriptions with new
identifiers at any tine.

8.3. Authorization

Thi s protocol does not define how a push service establishes whether
a user agent is permtted to create a subscription, or whether push
nmessages can be delivered to the user agent. A push service MAY
choose to authorize request based on any HTTP-conpati bl e

aut hori zation nethod avail abl e, of which there are nunerous options.
The aut horization process and any associ ated credentials are expected
to be configured in the user agent along with the URI for the "push
service".

Aut hori zation for sending push nessages is nmanaged using capability
URLs (see [CAP-URI]). A capability URL grants access to a resource
based solely on know edge of the URL. Capability URLs are used for
their "easy onward sharing" and "easy client API" properties. These
make it possible to avoid relying on rel ationshi ps between push
services and application servers, with the protocols necessary to
buil d and support those relationships.

A subscription URI therefore acts as a bearer token: know edge of the
URI inplies authorization to send push nmessages. Subscription URIs
MUST be extrenely difficult to guess. Encoding a | arge anount of
random entropy (at least 120 bits) in the path conponent ensures that
it is difficult to successfully guess a valid subscription URI

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 14]

| nt er net - Draf t HTTP Web Push March 2015

8. 4. Deni al of Service Considerations

Di scardi ng unwant ed nessages at the user agent based on nessage

aut henti cati on doesn’t protect against a denial of service attack on
the user agent. Even a relatively small volune of push nessages can
cause battery-powered devices to exhaust power reserves. Limting

t he nunber of entities with access to push channels limts the nunber
of entities that can generate val ue push requests of the push server.

An application can Iimt where push nmessages can origi nate by
limting the distribution of subscription URIs to authorized
entities. Ensuring that subscription URIs are hard to guess ensures
that only applications servers that have been given a subscription
URI can use it.

A malicious application with a valid subscription use the greater
resources of a push service to nount a denial of service attack on a
user agent. Push service SHOULD [imt the rate at which push
nmessages are sent to individual user agents. A push service or user
agent MAY term nate subscriptions (Section 7.3) that receives too
many push messages.

Conversely, a push service is also able to deny service to user
agents. Intentional failure to deliver nessages is difficult to

di stinguish fromfaults, which m ght occur due to transient network
errors, interruptions in user agent availability, or genuine service
out ages.

8.5. Logging Risks

Server request |ogs can reveal subscription URIs. Acquiring a
subscription URI permits the sending of push nessages. Logging could
al so reveal relationships between different subscription URIs for the
sane user agent.

Limtations on log retention and strong access control nechani sns can
ensure that URIs are not |earned by unauthorized entities.

9. | ANA Consi derati ons

Thi s docunent registers XXXXX URNs for use in identifying link
relation types. These are added to a new "Web Push ldentifiers”
regi stry according to the procedures in Section 4 of [RFC3553]; the
correspondi ng "push" sub-nanespace is entered in the "I ETF URN Sub-
nanmespace for Regi stered Protocol Paraneter ldentifiers"” registry.

The "Web Push Identifiers"” registry operates under the | ETF Revi ew
policy [RFC5226].

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 15]

| nt er net - Draf t HTTP Web Push March 2015

Regi stry nane: Wb Push ldentifiers
URN Prefix: urn:ietf:parans: push
Specification: (this docunent)

Respository: [Editor/IANA note: please include a link to the final
registry location.]

I ndex value: Values in this registry are URNs or URN prefixes that
start with the prefix "urn:ietf:parans: push”. Each is registered
i ndependent | y.

New regi strations in the "Web Push Identifiers" are encouraged to
i nclude the follow ng information:

URN. A conplete URN or URN prefi x.
Description: A summary description.

Specification: A reference to a specification describing the
semantics of the URN or URN prefix.

Contact: Email for the person or group maeking the registration.

I ndex value: As described in [RFC3553], URN prefixes that are
regi stered include a description of how the URN is constructed.
This is not applicable for specific URNs.

Two values are entered as the initial content of the "Wb Push
Identifiers" registry.

URN: urn:ietf:parans: push

Description: This link relation type is used to identify a web push
subscri ption.

Specification: (this docunent)
Contact: Wb Push WG (webpush@etf. orgQ)
URN: urn:ietf:parans: push:receipt

Description: This link relation type is used to identify a resource
for receiving delivery receipts for push nessages.

Specification: (this docunent)

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 16]

| nt er net - Draf t HTTP Web Push March 2015

Contact: Web Push WG (webpush@etf. org)
10. Acknow edgenents

Thi s docunent incorporates and iterates on material from
[1-D.draft-thonson-webpush-http2-02].

11. Ref er ences
11.1. Nor mat i ve Ref er ences

[CAP-URI] Tennison, J., "Good Practices for Capability URLs", FPWD
capability-urls, February 2014,
<http://ww. w3. org/ TR/ capabi lity-urls/>.

[1-D.draft-thonson-webpush-http2-02]
Thonmson, M, "Generic Event Delivery Using HTTP Push (work
in progress)", Decenber 2014,
<https://tools.ietf.org/htm/draft-thonson-webpush-
htt p2- 02. t xt >.

[I-D.ietf-httpbis-http2]
Bel she, M, Peon, R, and M Thonson, "Hypertext Transfer
Protocol version 2", draft-ietf-httpbis-http2-17 (work in
progress), February 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HTTP Over TLS', RFC 2818, My 2000.

[RFC3553] Mealling, M, Msinter, L., Hardie, T., and G Kl yne, "An
| ETF URN Sub- nanespace for Registered Protocol
Paranmeters”, BCP 73, RFC 3553, June 2003.

[RFC5226] Narten, T. and H Alvestrand, "Guidelines for Witing an
| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5988] Nottingham M, "Wb Linking", RFC 5988, October 2010.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014.

[RFC7230] Fielding, R and J. Reschke, "Hypertext Transfer Protocol

(HTTP/ 1.1): Message Syntax and Routing", RFC 7230, June
2014.

Danmaggi o & Raynor Expi res Septenber 7, 2015 [Page 17]

| nt er net - Draf t HTTP Web Push

March 2015

[RFC7232] Fielding, R and J. Reschke, "Hypertext Transfer Protocol

(HTTP/ 1.1): Conditional Requests",

[RFC7234] Fielding, R, Nottingham M, and J.

RFC 7232, June 2014.

Reschke, "Hypert ext

Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June

2014.

[RFC7240] Snell, J., "Prefer Header for HITTP",

11. 2. I nformati ve References

RFC 7240, June 2014.

[API] Sullivan, B. and E. Fullea, "Wb Push API", ED push-api,
Decenber 2014, <https://w3c. github.io/push-api/>.

[RFC6973] Cooper, A., Tschofenig, H, Aboba, B.,
Morris, J., Hansen, M, and R Smth,

Pet erson, J.,
"Privacy

Consi derations for Internet Protocols", RFC 6973, July

2013.
Aut hor s’ Addresses

El i o Damaggi o

M crosoft

One M crosoft \Way
Rednond, WA 98052
us

Enmai | : elioda@n crosoft.com
Bri an Raynor

M crosoft

One M crosoft Way

Rednond, WA 98052

us

Emai | : brian. raynor @n crosoft.com

Danmaggi o & Raynor Expi res Septenber 7, 2015

[Page 18]

