
WEBPUSH E. Damaggio
Internet-Draft B. Raymor
Intended status: Standards Track Microsoft
Expires: September 7, 2015 March 6, 2015

 Generic Event Delivery Using HTTP Push
 draft-damaggio-webpush-http2-00

Abstract

 A simple protocol for the delivery of realtime events to user agents
 is described. This scheme uses HTTP/2 server push.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Damaggio & Raymor Expires September 7, 2015 [Page 1]

Internet-Draft HTTP Web Push March 2015

Table of Contents

 1. Introduction . 2
 1.1. Conventions and Terminology 4
 2. Overview . 5
 2.1. HTTP Resources . 6
 3. Registration . 6
 4. Subscribing . 6
 5. Requesting Push Message Delivery 7
 5.1. Requesting Push Message Receipts 8
 6. Receiving Push Messages 9
 6.1. Acknowledging Push Message Receipts 10
 7. Operational Considerations 11
 7.1. Load Management . 11
 7.2. Push Message Expiration 11
 7.3. Subscription Expiration 12
 7.4. Implications for Application Reliability 12
 8. Security Considerations 13
 8.1. Confidentiality from Push Service Access 13
 8.2. Privacy Considerations 13
 8.3. Authorization . 14
 8.4. Denial of Service Considerations 15
 8.5. Logging Risks . 15
 9. IANA Considerations . 15
 10. Acknowledgements . 17
 11. References . 17
 11.1. Normative References 17
 11.2. Informative References 18
 Authors’ Addresses . 18

1. Introduction

 Many applications on mobile and embedded devices require continuous
 access to network communications so that real-time events - such as
 incoming calls or messages - can be conveyed (or "pushed") in a
 timely fashion.

 Mobile and embedded devices typically have limited power reserves, so
 finding more efficient ways to serve application requirements greatly
 benefits the application ecosystem. One significant contributor to
 power usage is the radio. Radio communications consume a significant
 portion of the energy budget on a wirelessly connected device.

 Uncoordinated use of persistent connections or sessions can
 contribute to unnecessary use of the device radio, since each
 independent session independently incurs overheads. In particular,
 keep alive traffic used to ensure that middleboxes do not prematurely
 time out sessions, can result in significant waste. Maintenance

Damaggio & Raymor Expires September 7, 2015 [Page 2]

Internet-Draft HTTP Web Push March 2015

 traffic tends to dominate over the long term, since events are
 relatively rare.

 Consolidating all real-time events into a single session ensures more
 efficient use of network and radio resources. A single service
 consolidates all events, distributing those events to applications as
 they arrive. This requires just one session, avoiding duplicated
 overhead costs.

 A push server that does not support reliable delivery over
 intermittent network connections or failing applications on devices,
 forces the device to acknowledge receipt directly to the application
 server, incurring additional power drain in order to establish
 (usually secure) connections to the individual application servers.

 While reliability is not required for messages that expire in few
 seconds (e.g. an incoming call) or collapsible ones (e.g. the current
 number of unread emails), it is more important when messages contain
 information that is longer lasting, e.g. a command to update a
 configuration value, or the acknowledgement of a financial
 transaction or workflow step. In particular, in the case of power-
 constrained devices, it is preferable to transmit the actual
 information in the "pushed" message reliably, instead of forcing them
 to reconnect periodically to get the current state.

 An open standard to "push" messages to embedded and mobile devices:

 o Simplifies deployment of "push" features across a variety of
 mobile and embedded device platforms

 o Creates an ecosystem of services (e.g. consolidation services) and
 development tools enabling efficient "push"

 o Technically enables consolidating real-time events into a single
 session which is impossible when each "push" implementation is
 built in isolation

 There are two primary scenarios under consideration:

 o Web applications in a mobile user agent and

 o Embedded devices receiving push messages from cloud services
 through an intermediate "field gateway", i.e. a reasonably
 powerful device (capable of secure HTTP/2 communications), which
 acts as a local agent.

Damaggio & Raymor Expires September 7, 2015 [Page 3]

Internet-Draft HTTP Web Push March 2015

 The W3C Web Push API [API] describes an API that enables the use of a
 consolidated push service from web applications. This expands on
 that work by describing a protocol that can be used to:

 o request the delivery of a push message to a user agent,

 o create new push message delivery subscriptions, and

 o monitor for new push messages.

 Requesting the delivery of events is particularly important for the
 Web Push API. The registration, management and monitoring functions
 are currently fulfilled by proprietary protocols; these are adequate,
 but do not offer any of the advantages that standardization affords.

 In the embedded field gateway scenario, small (possibly much less
 capable devices) connect to a field gateway to receive push messages.
 This protocol does not detail the device-to-field gateway connection,
 instead it details how the field-gateway can efficiently receive push
 messages on behalf of many devices.

 This document intentionally does not describe how a push service is
 discovered. Discovery of push services is left for future efforts,
 if it turns out to be necessary at all. User agents are expected to
 be configured with a URL for one (or more) push services.

1.1. Conventions and Terminology

 In cases where normative language needs to be emphasized, this
 document falls back on established shorthands for expressing
 interoperability requirements on implementations: the capitalized
 words "MUST", "MUST NOT", "SHOULD" and "MAY". The meaning of these
 is described in [RFC2119].

 This document defines the following terms:

 application: Both the sender and ultimate consumer of push messages.
 Many applications have components that are run on a user agent and
 other components that run on servers.

 application server: The component of an application that runs on a
 server and requests the delivery of a push message.

 push message: A message, sent from an application server to a user
 agent via a push service.

 push service: A service that delivers push messages to user agents.

Damaggio & Raymor Expires September 7, 2015 [Page 4]

Internet-Draft HTTP Web Push March 2015

 subscription: A message delivery context that is established between
 the user agent and the push service and shared with applications.
 All push messages are associated with a subscription.

 user agent: A device and software that is the recipient of push
 messages.

 Examples in this document use the HTTP/1.1 message format [RFC7230].
 Many of the exchanges can be completed using HTTP/1.1, where HTTP/2
 is necessary, the more verbose frame format from
 [I-D.ietf-httpbis-http2] is used.

2. Overview

 A general model for push services includes three basic actors: a user
 agent, a push service, and an application (server).

 +-------+ +--------------+ +-------------+
 | UA | | Push Service | | Application |
 +-------+ +--------------+ +-------------+
 | | |
 | Subscribe | |
 |--------------------->| |
 | Monitor | |
 |<====================>| |
 | | |
 | Provide Subscription |
 |-->|
 | | |
 : : :
 | | Push Message |
 | Push Message |<---------------------|
 |<---------------------| |
 | | |

 At the very beginning of the process, a new subscription is created
 by the user agent and then distributed to an application server. The
 subscription is the basis of all future interactions between the user
 agent and push service.

 It is expected that a different subscription will be provided to each
 application; however, there are no inherent cardinality constraints
 in the protocol. Multiple subscriptions might be created for the
 same application, or multiple applications could use the same
 subscription. Note however that sharing subscriptions can have
 security and privacy implications.

Damaggio & Raymor Expires September 7, 2015 [Page 5]

Internet-Draft HTTP Web Push March 2015

 Application servers use subscriptions to deliver push messages to
 user agents, via the push service.

 Subscriptions have a limited lifetime. They can also be terminated
 by either push service or user agent at any time. User agents and
 application servers need to be prepared to manage changes in
 subscription state.

2.1. HTTP Resources

 This protocol uses HTTP resources [RFC7230] and link relations
 [RFC5988]. The following resources are defined:

 push service: This resource is used in Subscribing (Section 4). It
 is configured into user agents.

 subscription: A link relation of type "urn:ietf:params:push" refers
 to a subscription resource. Subscription resources are used to
 deliver push messages. An application server sends push messages
 (Section 5) and a user agent receives push messages (Section 6)
 using this resource.

 receipt: A link relation of type "urn:ietf:params:push:receipt"
 refers to a delivery receipt resource. An application server
 receives delivery confirmation (Section 5.1) for push messages
 using this resource.

3. Registration

 The Registration and Subscribe resources referenced in
 [I-D.draft-thomson-webpush-http2-02] were deprecated to eliminate the
 overhead of maintaining registration-subscription relationships in
 the push server.

4. Subscribing

 A user agent sends a POST request to its configured push service
 resource to create a new subscription.

 POST /subscribe/ HTTP/1.1
 Host: push.example.net

 A response with a 201 (Created) status code includes a URI for the
 subscription in the Location header field.

Damaggio & Raymor Expires September 7, 2015 [Page 6]

Internet-Draft HTTP Web Push March 2015

 HTTP/1.1 201 Created
 Date: Thu, 11 Dec 2014 23:56:52 GMT
 Link: </p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx>;
 rel="urn:ietf:params:push"
 Location: https://push.example.net/p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx
 Cache-Control: max-age:864000, private

 The user agent should securely distribute the "subscription" resource
 to its application server. (Details are outside the scope of this
 document.)

5. Requesting Push Message Delivery

 An application server requests the delivery of a push message by
 sending an HTTP POST request to the "subscription" resource
 distributed by its user agent. The push message is included in the
 body of the request.

 The push message is a JSON [RFC7159] object which contains the push
 message data and directives for the push server:

 +-----------------+----------+--------------------------------------+
 | Member | Use | Description |
 +-----------------+----------+--------------------------------------+
message	optional	A JSON object that contains push
		message data
request_receipt	optional	A JSON boolean indicating whether
		the application server requests a
		confirmation that the push message
		was delivered to the user agent. Its
		default value is false.
time_to_live	optional	A JSON number that represents the
		expiration time in seconds for a
		push message. It is relative to the
		time that the push server receives
		the request. A message MUST NOT be
		delivered after it expires.
 +-----------------+----------+--------------------------------------+

 Table 1: Push Message Request Format

Damaggio & Raymor Expires September 7, 2015 [Page 7]

Internet-Draft HTTP Web Push March 2015

 POST /p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx HTTP/1.1
 Host: push.example.net
 Content-Type: application/json
 Content-Length: ...

 {
 "request_receipt": true,
 "message": {"data": "Hello World"}
 }

 A response with a 201 (Created) status code includes a URI for the
 message in the Location header field. This does not indicate that
 the message was delivered to the user agent. If a receipt was
 requested, then a URI for the receipt resource is included in the
 Link header field in the response.

HTTP/1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:55 GMT
Link: </r/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx/;
 rel="urn:ietf:params:push:receipt"
Cache-Control: max-age=600
Location: https://push.example.net/p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx/id

 A push server MUST return a 400 (Bad Request) status code in response
 to a POST request that contains malformed JSON in the body.

 [Should the push server return a 400 if the requested time_to_live
 exceeds its storage limits?]

 A push service MAY generate a 413 (Payload Too Large) status code in
 response to POST requests that include an entity body that is too
 large. Push services MUST NOT generate a 413 status code in
 responses to an entity body that is 4k (4096 bytes) or less in size.

5.1. Requesting Push Message Receipts

 The application server MAY request to be notified by the push server
 when a push message has been successfully delivered to the user
 agent.

 To request a receipt, the application server sets the value of the
 push message request_receipt member to true in the HTTP POST request
 to the "subscription" resource.

 The application server requests the delivery of receipts from the
 push server by making a HTTP GET request to the "receipt" resource.
 The push service does not respond to this request, it instead uses

Damaggio & Raymor Expires September 7, 2015 [Page 8]

Internet-Draft HTTP Web Push March 2015

 HTTP/2 server push [I-D.ietf-httpbis-http2] to send the content of
 push receipts when messages are acknowledged by the user agent.

 [Details on the message format for push receipt responses is TBD]

 The push server MUST generate a 504 (Gateway Timeout) if the user
 agent fails to acknowledge the receipt of the push message or the
 push server fails to deliver the message prior to its expiration.

6. Receiving Push Messages

 A user agent requests the delivery of new push messages by making a
 GET request to the "subscription" resource. The push service does
 not respond to this request, it instead uses HTTP/2 server push
 [I-D.ietf-httpbis-http2] to send the contents of push messages as
 they are sent by application servers.

 Each push message is pushed in response to a synthesized GET request.
 The GET request is made to the "subscription" resource. The response
 body is the entity body from the most recent POST request sent to the
 "subscription" resource by the application server.

 The following example request is made over HTTP/2.

 HEADERS [stream 7] +END_STREAM +END_HEADERS
 :method = GET
 :path = /p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx
 :authority = push.example.net

Damaggio & Raymor Expires September 7, 2015 [Page 9]

Internet-Draft HTTP Web Push March 2015

 The push service permits the request to remain outstanding. When a
 push message is sent by an application server, a server push is
 associated with the initial request. The response includes the push
 message.

 PUSH_PROMISE [stream 7; promised stream 4] +END_HEADERS
 :method = GET
 :path = /p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx/id
 :authority = push.example.net

 HEADERS [stream 4] +END_HEADERS
 :status = 200
 date = Thu, 11 Dec 2014 23:56:55 GMT
 last-modified = Thu, 11 Dec 2014 23:56:55 GMT
 cache-control = private
 content-type = ...
 content-length = ...

 DATA [stream 4] +END_STREAM
 { // JSON Object // }

 A user agent might receive a PUSH_PROMISE for a resource for which it
 has no active subscription. The resulting unwanted push message can
 be ignored, or the corresponding stream can be reset (using
 RST_STREAM) to avoid expending bandwidth.

 A user agent can request the contents of the "subscription" resource
 immediately by including a Prefer header field [RFC7240] with a
 "wait" parameter set to "0". The push server SHOULD return a link
 reference to the "subscription" resource and expiration information
 in response to this request. This request also triggers the delivery
 of all push messages that the push service has stored but not yet
 delivered. The server MUST generate a server push for all stored
 messages that have not yet been delivered.

 Different collapsing or coalescing disciplines for messages are
 possible but outside the scope of this document.

6.1. Acknowledging Push Message Receipts

 To enable "at least once delivery", the user agent MUST acknowledge
 receipt of the message by performing a HTTP DELETE on the resource in
 the :path pseudo-header field from the PUSH_PROMISE.

 DELETE /p/LBhhw0OohO-Wl4Oi971UGsB7sdQGUibx/id HTTP/1.1
 Host: push.example.net

Damaggio & Raymor Expires September 7, 2015 [Page 10]

Internet-Draft HTTP Web Push March 2015

 If the application has requested a delivery receipt, the push server
 MUST deliver a response to the application server monitoring the
 "receipt" resource.

7. Operational Considerations

 [No changes to [I-D.draft-thomson-webpush-http2-02]]

7.1. Load Management

 [No changes to [I-D.draft-thomson-webpush-http2-02]]

7.2. Push Message Expiration

 [This section from [I-D.draft-thomson-webpush-http2-02] was updated
 to include the time_to_live option.]

 Push services typically store messages for some time to allow for
 limited recovery from transient faults. If a push message is stored,
 but not delivered, the push service can indicate the probable
 duration of storage by including expiration information in the
 response to the push request.

 A push service is not obligated to store messages indefinitely. If a
 user agent is not actively monitoring for push messages, those
 messages can be lost or overridden by newer messages on the same
 subscription.

 Push messages that were stored and not delivered to a user agent are
 delivered when the user agent recommences monitoring. (A message
 with a time_to_live option MUST NOT be delivered once it expires.)
 Stored push messages SHOULD include a Last-Modified header field (see
 Section 2.2 of [RFC7232]) indicating when delivery was requested by
 an application server.

 A GET request to a "subscription" resource that has expired messages
 results in a 204 (No Content) status response, equivalent to if no
 push message were ever sent.

 Push services might need to limit the size and number of stored push
 messages to avoid overloading. In addition to using the 413 (Payload
 Too Large) status code for too large push messages, a push service
 MAY expire push messages prior to any advertised expiration time.

Damaggio & Raymor Expires September 7, 2015 [Page 11]

Internet-Draft HTTP Web Push March 2015

7.3. Subscription Expiration

 [Minor editorial changes to [I-D.draft-thomson-webpush-http2-02] to
 remove references to registration]

 In some cases, it may be necessary to terminate subscriptions so that
 they can be refreshed.

 A push service might choose to set a fixed expiration time. If a
 resource has a known expiration time, expiration information is
 included in responses to requests that create the resource, or in
 requests that retrieve a representation of the resource.

 Expiration is indicated using either the Expires header field, or by
 setting a "max-age" parameter on a Cache-Control header field (see
 [RFC7234]). The Cache-Control header field MUST also include the
 "private" directive.

 A push service can invalidate a subscription at any time. If a user
 agent has an outstanding request to the "subscription" resource, this
 can be signaled by returning a 400-series status code, such as 410
 (Gone). A push service uses server push to indicate that a
 subscription has expired; a pushed 400-series status code for the
 subscription resource signals the termination of a subscription.

 A user agent can request that a subscription be removed by sending a
 DELETE request to the corresponding URI.

 A push service MUST send a 400-series status code, such as 404 (Not
 Found) or 410 (Gone) if an application server atttempts to send a
 push message to a removed or expired subscription.

7.4. Implications for Application Reliability

 [This section from [I-D.draft-thomson-webpush-http2-02] was updated
 to include receipts.]

 The availability of push message delivery receipts in the protocol
 ensures that the application developer is not tempted to create
 alternative mechanisms for message delivery in case the push service
 fails to deliver a critical message. Setting up a polling mechanism
 or a backup messaging channel in order to compensate for these
 shortcomings negates almost all of the advantages a push service
 provides.

Damaggio & Raymor Expires September 7, 2015 [Page 12]

Internet-Draft HTTP Web Push March 2015

8. Security Considerations

 [Minor editorial changes throughout Section 8 to
 [I-D.draft-thomson-webpush-http2-02] to remove references to
 registration]

 This protocol MUST use HTTP over TLS [RFC2818]; this includes any
 communications between user agent and push service, plus
 communications between the application and the push service. Thus,
 all URIs use the "https" scheme. This provides confidentiality and
 integrity protection for subscriptions and push messages from
 external parties.

8.1. Confidentiality from Push Service Access

 The protection afforded by TLS does not protect content from the push
 service. Without additional safeguards, a push service is able to
 see and modify the content of the messages.

 Applications are able to provide additional confidentiality,
 integrity or authentication mechanisms within the push message
 itself. The application server sending the push message and the
 application on the user agent that receives it are frequently just
 different instances of the same application, so no standardized
 protocol is needed to establish a proper security context. The
 process of providing the application server with subscription
 information provides a convenient medium for key agreement.

 The Web Push API codifies this practice by requiring that each push
 subscription created by the browser be bound to a browser generated
 encryption key. Pushed messages are authenticated and decrypted by
 the browser before delivery to applications. This scheme ensures
 that the push service is unable to examine the contents of push
 messages.

 The public key for a subscription ensures that applications using
 that subscription can identify messages from unknown sources and
 discard them. This depends on the public key only being disclosed to
 entities that are authorized to send messages on the channel. The
 push server does not require access to this public key.

8.2. Privacy Considerations

 Push message confidentiality does not ensure that the identity of who
 is communicating and when they are communicating is protected.
 However, the amount of information that is exposed can be limited.

Damaggio & Raymor Expires September 7, 2015 [Page 13]

Internet-Draft HTTP Web Push March 2015

 Subscription URIs MUST NOT provide any basis to correlate
 communications for a given user agent. It MUST NOT be possible to
 correlate any two subscription URIs based solely on the content of
 the subscription URIs. This allows a user agent to control
 correlation across different applications, or over time.

 In particular, user and device information MUST NOT be exposed
 through the subscription URI.

 In addition, subscription URIs established by the same user agent
 MUST NOT include any information that allows them to be correlated
 with the associated user agent.

 Note: This need not be perfect as long as the resulting anonymity
 set (see [RFC6973], Section 6.1.1) is sufficiently large. A
 subscription URI necessarily identifies a push service or a single
 server instance. It is also possible that traffic analysis could
 be used to correlate subscriptions.

 A user agent MUST be able to create new subscriptions with new
 identifiers at any time.

8.3. Authorization

 This protocol does not define how a push service establishes whether
 a user agent is permitted to create a subscription, or whether push
 messages can be delivered to the user agent. A push service MAY
 choose to authorize request based on any HTTP-compatible
 authorization method available, of which there are numerous options.
 The authorization process and any associated credentials are expected
 to be configured in the user agent along with the URI for the "push
 service".

 Authorization for sending push messages is managed using capability
 URLs (see [CAP-URI]). A capability URL grants access to a resource
 based solely on knowledge of the URL. Capability URLs are used for
 their "easy onward sharing" and "easy client API" properties. These
 make it possible to avoid relying on relationships between push
 services and application servers, with the protocols necessary to
 build and support those relationships.

 A subscription URI therefore acts as a bearer token: knowledge of the
 URI implies authorization to send push messages. Subscription URIs
 MUST be extremely difficult to guess. Encoding a large amount of
 random entropy (at least 120 bits) in the path component ensures that
 it is difficult to successfully guess a valid subscription URI.

Damaggio & Raymor Expires September 7, 2015 [Page 14]

Internet-Draft HTTP Web Push March 2015

8.4. Denial of Service Considerations

 Discarding unwanted messages at the user agent based on message
 authentication doesn’t protect against a denial of service attack on
 the user agent. Even a relatively small volume of push messages can
 cause battery-powered devices to exhaust power reserves. Limiting
 the number of entities with access to push channels limits the number
 of entities that can generate value push requests of the push server.

 An application can limit where push messages can originate by
 limiting the distribution of subscription URIs to authorized
 entities. Ensuring that subscription URIs are hard to guess ensures
 that only applications servers that have been given a subscription
 URI can use it.

 A malicious application with a valid subscription use the greater
 resources of a push service to mount a denial of service attack on a
 user agent. Push service SHOULD limit the rate at which push
 messages are sent to individual user agents. A push service or user
 agent MAY terminate subscriptions (Section 7.3) that receives too
 many push messages.

 Conversely, a push service is also able to deny service to user
 agents. Intentional failure to deliver messages is difficult to
 distinguish from faults, which might occur due to transient network
 errors, interruptions in user agent availability, or genuine service
 outages.

8.5. Logging Risks

 Server request logs can reveal subscription URIs. Acquiring a
 subscription URI permits the sending of push messages. Logging could
 also reveal relationships between different subscription URIs for the
 same user agent.

 Limitations on log retention and strong access control mechanisms can
 ensure that URIs are not learned by unauthorized entities.

9. IANA Considerations

 This document registers XXXXX URNs for use in identifying link
 relation types. These are added to a new "Web Push Identifiers"
 registry according to the procedures in Section 4 of [RFC3553]; the
 corresponding "push" sub-namespace is entered in the "IETF URN Sub-
 namespace for Registered Protocol Parameter Identifiers" registry.

 The "Web Push Identifiers" registry operates under the IETF Review
 policy [RFC5226].

Damaggio & Raymor Expires September 7, 2015 [Page 15]

Internet-Draft HTTP Web Push March 2015

 Registry name: Web Push Identifiers

 URN Prefix: urn:ietf:params:push

 Specification: (this document)

 Respository: [Editor/IANA note: please include a link to the final
 registry location.]

 Index value: Values in this registry are URNs or URN prefixes that
 start with the prefix "urn:ietf:params:push". Each is registered
 independently.

 New registrations in the "Web Push Identifiers" are encouraged to
 include the following information:

 URN: A complete URN or URN prefix.

 Description: A summary description.

 Specification: A reference to a specification describing the
 semantics of the URN or URN prefix.

 Contact: Email for the person or group making the registration.

 Index value: As described in [RFC3553], URN prefixes that are
 registered include a description of how the URN is constructed.
 This is not applicable for specific URNs.

 Two values are entered as the initial content of the "Web Push
 Identifiers" registry.

 URN: urn:ietf:params:push

 Description: This link relation type is used to identify a web push
 subscription.

 Specification: (this document)

 Contact: Web Push WG (webpush@ietf.org)

 URN: urn:ietf:params:push:receipt

 Description: This link relation type is used to identify a resource
 for receiving delivery receipts for push messages.

 Specification: (this document)

Damaggio & Raymor Expires September 7, 2015 [Page 16]

Internet-Draft HTTP Web Push March 2015

 Contact: Web Push WG (webpush@ietf.org)

10. Acknowledgements

 This document incorporates and iterates on material from
 [I-D.draft-thomson-webpush-http2-02].

11. References

11.1. Normative References

 [CAP-URI] Tennison, J., "Good Practices for Capability URLs", FPWD
 capability-urls, February 2014,
 <http://www.w3.org/TR/capability-urls/>.

 [I-D.draft-thomson-webpush-http2-02]
 Thomson, M., "Generic Event Delivery Using HTTP Push (work
 in progress)", December 2014,
 <https://tools.ietf.org/html/draft-thomson-webpush-
 http2-02.txt>.

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-17 (work in
 progress), February 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, June 2003.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

Damaggio & Raymor Expires September 7, 2015 [Page 17]

Internet-Draft HTTP Web Push March 2015

 [RFC7232] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests", RFC 7232, June 2014.

 [RFC7234] Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching", RFC 7234, June
 2014.

 [RFC7240] Snell, J., "Prefer Header for HTTP", RFC 7240, June 2014.

11.2. Informative References

 [API] Sullivan, B. and E. Fullea, "Web Push API", ED push-api,
 December 2014, <https://w3c.github.io/push-api/>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

Authors’ Addresses

 Elio Damaggio
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: elioda@microsoft.com

 Brian Raymor
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: brian.raymor@microsoft.com

Damaggio & Raymor Expires September 7, 2015 [Page 18]

