NFSv4 C. Lever
I nternet-Draft Oracl e
I ntended status: |nformational Cct ober 9, 2015
Expires: April 11, 2016

RPC- over - RDMA Versi on One | npl enentation Experience
draft-cel -nfsv4-rfc5666-inpl ement ati on-experi ence-01

Abst r act

Thi s docunent details experiences and chal |l enges inplenenting the
RPC- over - RDMA Version One protocol. Specification changes are
recomended to address avoi dable interoperability failures.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on April 11, 2016
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Lever Expires April 11, 2016 [Page 1]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Tabl e of Contents

1. Introduction . 3
1.1. Requirenents Language . 3
1.2. Purpose O This Docunent 4
1.3. Updating RFC 5666 . 4
1.4. Scope O This Docunent 5

2. RPC Over-RDVA Essential s 5
2.1. Argunents And Results . . 5
2.2. Renote Direct Menory Access . 6

2.2.1. Smull Data Transfers 6
2.2.2. Large Data Transfers 7
2.3. Transfer Models . 7
2.3.1. Read-Read . 7
2.3.2. Wite-Wite . 7
2.3.3. Read-Wite . . 8
2. 4. Upper Layer Binding SpeC|f|cat|ons 8
2.5. On-The-Wre Protocol T, 8
2.5.1. Inline Operation 8
2.5.2. RDVA Segnent 11
2.5.3. Read Chunk 11
2.5.4. Wite Chunk . 12
2.5.5. Read List 13
2.5.6. Wite List . 13
2.5.7. Position Zero Read Chunk 14
2.5.8. Reply Chunk . 14

3. Specification Issues 14

3.1. XDR darifications 14
3.1.1. Recommendations . . 16
3.2. The Position Zero Read Chunk 17
3.2.1. Recommendations . . 19
3.3. RDVA NOVEG Cal | Messages 19
3.3.1. Recomendations 20
3.4. RDVA MBG Call with P05|t|on Zero Read Chunk . 20
3.4.1. Reconmendations . 21
3.5. Padding Inline Content After A Chunk 21
3.5.1. Recommendations . e 23
3.6. Wite List XDR Roundup 23
3.6.1. Recommendations . 24
3.7. Wite List Error Cases 25
3.7.1. Recommendations . 27

4. Qperational Considerations e e 27

4.1. Conputing Request Buffer Requirenents . 27
4.1.1. Recommendations . . e 28
4.2. Default Inline Buffer S|ze 28
4,2.1. Recommendations . . . 28
4.3. Wen To Use Reply Chunks 29
4.3.1. Reconmendations . 29

Lever Expires April 11, 2016 [Page 2]

Intern

et-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

4.4. Conputing Credit Values . 30
4.4.1. Reconmendations . 30
4.5. Race W ndows . 30
4.5.1. Recomendations . 30
5. Pre-requisites for NFSv4 . . 31
5.1. Miltiple RDMA-eligible Awgunents and Results 31
5.1.1. Recomendat i ons . . e 31
5.2. -directional Operation 31
5.2.1. Recomendati ons . 31
5.3. Msssing NFS Bi nding SpeC|f|cat|ons . 31
6. Requirenents for Upper Layer Binding SpeC|f|cat|ons . 32
6.1. Organization O Binding Specification Requirenents 32
6.1.1. Reconmendations . . 33
6.2. RDVA Eligibility 33
6.2.1. Reconmendations . 33
6.3. Binding Specification Cbnplet|on Assessnent 34
6.3.1. Recommendations . 34
7. Renoval of Uninpl enented Protocol Features 34
7.1. Read-Read Transfer Mdel 34
7.1.1. Recomendations . 34
7.2. RDVA _MSGP . . 35
7.2.1. Reconnendatlons . 35
8. Optional Additions To The Protocol . 35
8.1. Support For GSS-API Wth RPC%CNer—RDWA 35
8.2. Rernpte Invalidation . e e 36
8.2.1. Hardware Support 36
8.2.2. Avoiding Spurious Invalldatlon 36
8.2.3. Invalidating Multiple R keys 37
8.2.4. Invalidation Races . . 37
8.2.5. Backward Cbnpatlblllty 37
8.2.6. Conclusion . . 37
8.3. Wirk Cancellation . 37
9. Security Considerations . 38
10. | ANA Consi derations . 38
11. Acknow edgenents 38
12. References . . 39
12.1. Normative References . 39
12.2. Informative References . 40
Aut hor’ s Addr ess 40
1. Introduction
1.1. Requirenents Language
The key words "MJST", "MJST NOT', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMVENDED', "MAY", and

"OPTIONAL" in this docunment are to be interpreted as described in

[RF

Lever

C2119] .

Expires April 11, 2016

[Page 3]

I nt

1.2

1.3.

Lev

ernet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Purpose OF This Docunent

Thi s docunment summarizes inplenmentation experience with the RPC over-
RDVA Ver si on One protocol [RFC5666], and proposes inprovenents to the
protocol specification based on inplenenter experience, frequently-
asked questions, and interviews with a co-author of RFC 5666.

A key contribution of this docunment is to highlight areas of RFC 5666
wher e i ndependent good faith readings could result in distinct

i npl ementations that do not interoperate with each other. Correcting
these specification issues is critical: fresh inplenmentations of RPC
over - RDMA Version One continue to arise

Recommendations are linmited to the foll ow ng areas:

0 Repairing specification anbiguities

0 Codifying successful inplenentation practices and conventions

o Cdarifying the role of Upper Layer Binding specifications

0 Exploring protocol enhancenents that m ght be added w thout wire
behavi or changes

Updati ng RFC 5666

This section is an unofficial sunmary of the nfsv4 Wrking G oup
nmeeting held during | ETF 92.

Several alternatives for updating RFC 5666 were discussed with the
RFC Editor and with the assenbl ed nenbers of the nfsv4d Wrking G oup
Anmong t hem wer e:

1. Filing individual errata for each issue.

2. Introducing an new RFC that updates but does not obsolete RFC
5666, but nakes no change to the protocol

3. Introducing an RFC 5666bis that replaces and thus obsol etes RFC
5666, but nmakes no change to the protocol

4. Introducing a new RFC that specifies RPC over-RDVA Version Two
An additional possibility which is sonetinmes chosen by ot her Wbrking

G oups would be to update RFC 5666 as it transitions from Proposed
Standard to Draft Standard.

er Expires April 11, 2016 [Page 4]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

The overall preference observed during | ETF 92 was to update and
obsol ete RFC 5666, but retain full interoperability with current RPC
over - RDMA Version One inplenentations by avoi ding changes to on-the-
wi re behavior (nunber 3 above). This eases the burden on

i mpl ementers, who can then reference a single specification of the
protocol. |In addition, this alternative extends the life of the
current inplenmentations in the field, which utilize RPC over- RDVA
Versi on One effectively.

Subsequent di scussion with the nfsv4d Wrking Goup focused prinarily
on resolving specification anbiguities that could result in
interoperability failure. A Version Two of RPC-over-RDVA, where
deeper changes can be nade and new functionality introduced, was |eft
open for a later tine. The priority is fixing issues with the
current Proposed Standard.

Recommendations in this docunent accepted by the nfsv4d Working G oup
can be used as input when constructing an RFC 5666bi s.

1.4. Scope O This Docunent

Thi s docunent does not specify a new Internet Protocol. It does not
propose changes to an existing Internet Protocol that are visible to
other inplenentations. It does not update a Proposed Standard, but

acts sinply as a place to record specific areas that need attention.
Therefore the category of this docunment is |nformational

2. RPC Over-RDVA Essentials
The followi ng sections sunmarize the state of affairs defined in RFC
5666. This is a distillation of text from RFC 5666, dialog with a
co- aut hor of RFC 5666, and inplenenter experience. The XDR
definitions are copied from RFC 5666 Section 4. 3.

2.1. Argunents And Results

Li ke a local function call, every Renote Procedure Call (RPC)
operation has a set of one or nore "argunents" and a set of one or
more "results.” The calling context is not allowed to proceed unti

the function’s results are available. Unlike a local function call
the called function is executed renotely rather than in the |loca
application’s context.

A client endpoint, or "requester", serializes an RPC call’s arguments
into a byte stream using XDR [RFC4506]. The XDR streamis conveyed
to a server endpoint via an RPC call nessage (sonetinmes referred to
as an "RPC request").

Lever Expires April 11, 2016 [Page 5]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

The server endpoint, or "responder”, deserializes the argunents and
processes the requested operation. It then serializes the
operation’s results into an XDR byte stream This streamis conveyed
back to the client endpoint via an RPC reply nessage. The client
deserializes the results and allows the original caller to proceed.

The renmai nder of this docunent assunmes a working know edge of XDR and
the RPC protocol [RFC5531].

2.2. Renote Direct Menory Access

An individual RPC argunment or result nay be very large. For exanple,
NFS READ and WRI TE payl oads are often 100KB or | arger.

An RPC client system can be nmade nore efficient if |arge RPC
argunents and results are transferred by a third party such as
intelligent network interface hardware. Renpte Direct Menory Access
(RDMA) enabl es of fl oadi ng data novenent to avoid the negative
performance effects of using traditional host-based network
operations to nove bul k data.

Anot her benefit of RDMA data transfer is that the host CPUs on both
transport endpoints are not involved. Data transfer on both the
sendi ng and receiving endpoints is zero-touch. |In particular, data
that is witten to or read froma filesystemis opaque to the
transport layer, and thus can be transferred w thout any
serialization or other translation by the host CPU on either
endpoi nt ..

RFC 5666 describes how to use only the Send, RDVA Read, and RDVA
Wite operations described in [RFC5040] to move RPC calls and replies
bet ween requesters and responders. The remai nder of this docunent
assunes an understanding of RDMA and its primtives

Because RDVA Read and Wite operations work nost efficiently with
| arge payl oads, RPC-over-RDVA Version One noves RPCs with | arge
payl oads differently than RPCs with small payl oads.

2.2.1. Small Data Transfers
A local endpoint transfers data into snmall unadvertised buffers on a
renot e endpoi nt using Send operations. Each transfer behaves |like a
reliabl e datagram send operation
This transfer node is utilized to convey small RPC operations and

adverti senents of buffer coordinates for large data transfers (see
below). The | atency of Send operations is significantly |ower than

Lever Expires April 11, 2016 [Page 6]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

traditional network transfers, but the size of these operations is
typically limted

2.2.2. Large Data Transfers

A local endpoint tags nmenory areas to be involved in data transfers,
then advertises the coordinates of those areas to a renote endpoint.
The renote endpoint transfers data into or out of those areas using
RDVA Read and Wite operations.

Finally the renpote endpoint signals that its work is done, and the
| ocal endpoint ensures renpte access to the nmenory area is no | onger
al | owned.

This transfer node is utilized to convey |arge whole RPCs or single
| arge argunents or results.

2.3. Transfer Mbdels

A "transfer nodel" describes which endpoint is responsible for
perform ng RDMA Read and Wite operations. The opposite endpoint
must expose part or all of its nenory, and advertise the coordinates
of that nenory.

2.3.1. Read-Read

Request ers expose their nmenory to the responder, and the responder
exposes its nenory to requesters. The responder enpl oys RDVA Read
operations to convey RPC argunents or whole RPC calls. Requesters
enpl oy RDMA Read operations to convey RPC results or whole RPC
relies.

Al t hough this nodel is specified in RFC 5666, no current RPC-over-
RDVA Version One inplenentation uses the Read-Read transfer nodel.

2.3.2. Wite-Wite

Request ers expose their nmenory to the responder, and the responder
exposes its nmenory to requesters. Requesters enploy RDVA Wite
operations to convey RPC argunents or whole RPC calls. The responder
enpl oys RDMA Wite operations to convey RPC results or whol e RPC
relies.

The Wite-Wite transfer nmodel is used by a few other storage
protocols, but is not considered in RFC 5666

Lever Expires April 11, 2016 [Page 7]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

2.3.3. Read-Wite

Request ers expose their nmenory to the responder, but the responder
does not expose its nenory. The responder enpl oys RDVA Read
operations to convey RPC argunents or whole RPC calls. The responder
enpl oys RDMA Wite operations to convey RPC results or whol e RPC
relies.

This nmodel is specified in RFC 5666. All known RPC-over-RDMA Version
One inplenentations enploy this nodel. For clarity, the remainder of
this docunent considers only the Read-Wite transfer nodel.

2.4. Upper Layer Binding Specifications

RFC 5666 provides a framework for conveying RPC requests and replies
on RDMA transports. By itself this is insufficient to enable an RPC
program referred to as an "Upper Layer Protocol" or ULP, to operate
over an RDMA transport.

Arguments and results cone in different sizes and have different
serialization requirenents, all depending on the Upper Layer

Protocol. Sone argunents and results are appropriate for RDVA
transfer, while others are not. Thus RFC 5666 requires additiona
separate specifications that describe how each ULP may use RDMA. The
set of requirenents for a ULP to use an RDVA transport is known as an
"Upper Layer Binding" specification, or ULB

An Upper Layer’'s ULB states which RPC argunents and results in the
RPC program are permtted to be transferred by RDVA Read and Wite.
These are sonetines referred to as "RDMA-eligible." These
restrictions do not apply when a whole RPC call or reply is
transmtted via an RDVA operation

A ULB is required for each RPC program and version tuple that is
interested in operating on an RDMA transport. A ULB rmay be part of
anot her specification, or it may be a stand-al one docunent, simnilar
to [RFC5667].

2.5. On-The-Wre Protoco
2.5.1. Inline Operation

Each RPC call or reply nessage conveyed on an RDMA transport starts
with an RPC-over-RDVMA header. A requester uses a Send operation to
convey the RPC-over-RDVA header to a responder. A responder does

i kewise to convey RPC replies back to a requester. The nessage
contents sent via Send, including an RPC-over- RDMA header and

possi bly an RPC nessage proper, are referred to as "inline content."

Lever Expires April 11, 2016 [Page 8]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

The RPC-over - RDMA header starts with three uint32 fields
<CODE BEG NS>

struct rdnma_nsg {

ui nt 32 rdme_xi d; /* Mrrors the RPC header xid */
ui nt 32 rdme_vers; /* Version of this protocol */
ui nt 32 rdma_credit; /* Buffers requested/granted */
rdma_body rdnma_body;
b
<CODE ENDS>

Fol I owi ng these three fields is a union

Lever Expires April 11, 2016 [Page 9]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

<CCODE BEG NS>

enum rdma_proc {
RDVA MBG=0, /[* An RPC call or reply nsg */
RDVA NOVBG=1, /* An RPC call or reply nsg -
separate body */

RDMA_ERROR=4 /* An RPC RDMA encoding error */
b

uni on rdma_body switch (rdma_proc proc) {
case RDVA MG
rpc_rdma_header rdnma_nsg;
case RDMA NOVBG
rpc_rdma_header _nonsg rdnma_nonsg

case RDMA ERROR
rpc_rdma_error rdna_error;

H

struct rpc_rdma_header {
struct xdr _read |ist *rdma_reads;
struct xdr_ wite list *rdma_wites;
struct xdr_write_chunk *rdma_reply;
/* rpc body follows */

b

struct rpc_rdnma_header _nonsg {
struct xdr_read |ist *rdma_reads;
struct xdr wite list *rdma_wites;
struct xdr_write_chunk *rdnma_reply;

b
<CODE ENDS>

In either the RDMA_MSG or RDMA_NOVSG case, the RPC-over- RDMA header
may advertise menory coordinates to be used for RDVA data transfers
associated with this RPC

The difference between these two cases is whether or not the
traditional RPC header itself is included in this Send operation
(RDVMA_MSG), or not (RDMA_NOMSG . In the former case, the RPC header
follows imedi ately after the rdna_reply field. |In the latter case,
the RPC header is transfered via another mechanism (typically a
separate RDVA Read operation).

A requester nmay use either type of nmessage to send an RPC cal
message, depending on the requirenents of the RPC call nessage being

Lever Expires April 11, 2016 [Page 10]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

conveyed. A responder may use RDVMA NOMSG only when the requester
provides a Reply chunk (see Section 4.3). A responder is free to use
RDMA M5G instead in that case, depending on the requirenents of the
RPC reply nessage

2.5.2. RDVA Segnent

An "RDVA segment”, or just "segment", contains the co-ordinates of a
contiguous nmenory region that is to be conveyed via an RDVA Read or
RDVA Wite operation.

A segnent is advertised in an RPC-over-RDVA header to enable the
recei ving endpoint to drive subsequent RDMA access of the data in
that menory region. The RPC-over-RDMA Version One XDR represents an
RDVA segnent with the xdr_rdma_segnent struct:

<CODE BEG NS>

struct xdr_rdma_segnent {
ui nt 32 handl e;
ui nt 32 | engt h;
ui nt 64 of fset;

H
<CODE ENDS>

See [RFC5040] for a discussion of what the content of these fields
neans.

2.5.3. Read Chunk

One or nore "read chunks" are used to advertise the coordinates of an
RPC argunent to be transferred via an RDVMA Read operation. Each read
chunk is represented by the xdr_read chunk struct:

<CODE BEGQ NS>
struct xdr_read_chunk {
ui nt 32 position;
struct xdr_rdnma_segnent target;

H
<CCDE ENDS>
A read chunk is one RDVA segnent with a Position field. The Position

field indicates the location in an XDR stream where the argunment’s
data woul d appear if it were being transferred inline.

Lever Expires April 11, 2016 [Page 11]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

A single RPC argunent night be contained in one contiguous nmenory
region. That RPC argument can be represented by a single read chunk

Alternately, a single RPC argunment might reside in nultiple

di sconti guous nenory regions. Since the nmenory regions are not
contiguous, each region is represented by a single read chunk in a
list of chunks. The definition of Position in RFC 5666 Section 3.4
inmplies this by saying "all chunks belonging to a single RPC
argunent... will have the same position.”

Thus all read chunks that belong to the sane RPC argunent have the
sane value in their Position field, and are read in list order into
menory regions on the responder. This enables gathering RPC argunent
data frommultiple buffers on the requester.

2.5.4. Wite Chunk

A "Wite chunk" conveys an RPC result object using one or nore RDVA
Wite operations.

Each wite chunk is an array of RDMA segments. One RDVA-eligible RPC
result is always conveyed in a single wite chunk. This is unlike an
RDVA- el i gi bl e RPC argunent, which nay be conveyed in nore than one
read chunk.

A wite chunk is represented by the xdr_write_chunk struct:
<CODE BEG NS>

struct xdr_write_chunk {
struct xdr_rdma_segnent target<>
b

<CODE ENDS>

These segnents are witten in array order into menory regions on the
requester This enables scattering an RPC result’s data into multiple
buffers on the requester.

A requester provides a wite chunk as a receptacle for an RPC result.
Typically the exact size of the result cannot be predicted before the
responder has forned its reply. Thus the requester nust provide
enough space in the wite chunk for the largest result the responder
m ght generate for this RPC operation. The responder updates the
size of each segnment in the Wite chunk when it returns the Wite
list to the requester via a matching RPC reply nessage.

Lever Expires April 11, 2016 [Page 12]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Because the requester nust pre-allocate the area in which the
responder wites the result before the responder has fornmed the
reply, giving a position and size to the data, the requester cannot
know t he XDR position of the reply object. Thus wite chunks do not
have a Position field.

2.5.5. Read List

Each RPC-over-RDVA Version One call has one "Read list,"” provided by
the requester. This is a list of zero or nore RDVA segnents with
Position values that nake up all the RPC argunents in this RPC
request to be conveyed via RDVMA Read operations

A Read list is represented by the xdr_read_list struct:
<CODE BEG NS>
struct xdr_read list {

struct xdr_read_chunk entry;
struct xdr _read |ist *next;

b
<CODE ENDS>

The Read list may be empty if the RPC call has no RPC arguments that
are RDMA-eligible

2.5.6. Wite List
Each RPC-over-RDVA Version One call has one "Wite list," provided by
the requester. This is a list of zero or nore RDVA segnent arrays

that will catch the RPC results in this RPC request to be conveyed
via RDVA Wite operations

A Wite list is represented by the xdr_ wite |ist struct:
<CODE BEGQ NS>
struct xdr_wite list {

struct xdr_wite chunk entry;
struct xdr_ wite list *next;

H
<CCODE ENDS>
Note that this |ooks simlar to a Read |ist, but because an

xdr_write chunk is an array and not an RDMA segnment, the two data
structures are not the sane.

Lever Expires April 11, 2016 [Page 13]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

2

2

3.

3.

The Wite list may be enpty if there are no RPC results which are
RDMVA- el i gi bl e

5.7. Position Zero Read Chunk

A requester may use a "Position Zero read chunk" to convey nost or

all of an entire RPC call, rather than including the RPC call nessage
inline. A Position Zero read chunk is necessary if the RPC cal
message is too large to fit inline. RFC 5666 Section 5.1 defines the
operation of a "Position Zero read chunk."

To support gathering a large RPC call nessage fromnultiple |ocations
on the requester, a Position Zero read chunk may be conprised of nore
than one xdr_read _chunk. Each read chunk that belongs to the
Position Zero read chunk has the value zero in its Position field.

5.8. Reply Chunk

Each RPC-over-RDVA Version One call nmay have one "Reply chunk,"
provided by the requester. A Reply chunk is a wite chunk, thus it
is an array of one or nore RDVA segnents. This enables a requester
to control where the responder scatters the parts of the RPC reply
message. Typically there is only one segnent in a Reply chunk

A requester provides the Reply chunk whenever it predicts the
responder’s reply cannot fit inline. It may choose to provide the
Reply chunk even when the responder can return only a small reply. A
responder may use a "Reply chunk"” to convey nost or all of an entire
RPC reply, rather than including the RPC reply nessage inline.

Speci fication |ssues
1. XDR Clarifications

Even seasoned NFS/ RDVA i npl enenters have had difficulty agreeing on
preci sely what a "chunk" is, and had chal | enges distinguishing the
structure of the Read list fromstructure of the Wite |ist.

On occasion, the text of RFC 5666 uses the term "chunk"” to represent
either read chunks or write chunks, even though these are different
data types and have different senmantics

For exanple, RFC 5666 Section 3.4 uses the term"chunk list entry"
even though the discussion is referring to an array elenment. It
inmplies all chunk types have a Position field, even though only read
chunks have this field.

Near the end of Section 3.4, it says:

Lever Expires April 11, 2016 [Page 14]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Therefore, read chunks are encoded into a read chunk list as a
single array, with each entry tagged by its (known) size and its
argunent’s or result’s position in the XDR stream

The Read list is not an XDR array, it is always an XDR list. A Wite
chunk is an XDR array.

RFC 5666 Section 3.7, third paragraph uses the terns "chunked

el ement” and "chunk segment.” Neither termis defined or used
anywhere el se. The fourth paragraph refers to a "sequence of chunks"
but likely neans a sequence of RDVA segnents.

The Read list is typically used for Upper Layer WRI TE operations such
as NFS WRITE, while the Wite list is typically used for Upper Layer
READ operations such as NFS READ. |If the Read-Read transfer nodel is
renoved from RFC 5666bis, it would be | ess confusing to readers of
Upper Layer Binding specifications to call the Read |ist the Argunent
list, and call the Wite list the Result list.

The XDR definition for a read chunk is an RDVA segnent with a
position field. It is inplied in RFC 5666 Section 3.4 that multiple
xdr _read_chunk objects can nake up a single RPC argunment object if
they share the same Position in the XDR stream Sone inplenentations
depend on using multiple RDVA segnents in the sane XDR Position
particularly for sending Position Zero read chunks efficiently by
gathering an RPC call nessage fromnultiple discontiguous nmenory

| ocations. Oher inplenentations do not support sending or receiving
mul ti ple Read chunks with the sane Position

Upper Layer Binding docunents may limt the nunber of Read |i st
entries allowed in a particular operation. |In that case, the UBis
not restricting the total nunber of read chunks in the list, but
rather the total nunber of distinct Positions that appear in the
list.

The XDR definition for a wite chunk is an array of segnents. One
xdr_write_chunk represents one RPC result object. An RPC argunent is
represented by one or nore read chunks, but an RPC result is always
represented by a single wite chunk

The Wite list is especially confusing because it is a list of arrays
of RDVA segnents, rather than a sinple Iist of xdr_read_chunk
objects. What is referred to as a Read list entry often neans one
xdr _read_chunk, or one segnent. That segnent can be either a portion
of or a whole RPC argunent. A Wite list entry is an array, and is
al ways a whole RPC result.

Lever Expires April 11, 2016 [Page 15]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

An Upper Layer Binding may linmt the nunmber of chunks in a Wite |ist
allowed for a particular operation. That strictly limts the nunber
of Wite list entries.

Not having a firm one-to-one correspondence between read chunks and
RPC argunents is sonetines awkward. The two chunk types should be
nore synmetrical to avoid confusion, although that m ght be difficult
to pull off without altering the RPC- over-RDVA Versi on One XDR
definition. As we will see later, the XDR roundup rul es al so appear
to apply asymmetrically to read chunks and wite chunks.

I mpl ement ers have been aided by the ASCII art block commrents in the
Li nux kernel in net/sunrpc/xprtrdma/rpcrdma.c, excerpted here. This
di agram shows exactly how the Read list and Wite list are
constructed in an XDR stream

<CODE BEG NS>

/*
* Encodi ng key for single-list chunks
* (HLOO = Handl e32 Length32 O fset 64):
*
* Read chunklist (a linked list):
* N el enents, position P (same P for all chunks of sane arg!):
* 1- PHOO- 1- PHLOO- ... - 1 - PHLOO- 0
*
* Wite chunklist (a list of (one) counted array):
* N el ement s:
* 1- N- HO- HOO- ... - HOO- 0
*
* Reply chunk (a counted array):
* N el enent s:
* 1- N- HOO- HOO- ... - HLOO
*
/
<CODE ENDS>

3.1.1. Recommendat i ons

To aid in understandi ng, RFC 5666bis should include a glossary that
expl ai ns and di stingui shes the various elenents in the protocol
Upper Layer Binding specifications nmay also refer to these terns.
RFC 5666bi s should utilize and capitalize these glossary terns
consi stently.

RFC 5666bi s shoul d i ntroduce additional diagranms that suppl enent the

XDR definition in RFC 5666 Section 4.3. RFC 5666bis should explain
the structure of the XDR and how it is used. RFC 5666bis should

Lever Expires April 11, 2016 [Page 16]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

contain an explicit but brief rationalization for the structura
di fferences between the Read list and the Wite |ist.

RFC 5666bi s shoul d use a consistent nam ng convention for all XDR
definitions. For exanple, all structures and union nanes shoul d use
an "rpc_rdmal_" prefix.

To address conflation of a read chunk that is a single xdr_read_chunk
and a read chunk that is a list of xdr_read _chunk elenents with
identical Position field values, the follow ng specification changes
shoul d be nade:

0 Rename the xdr_read_chunk XDR object as rpc_rdmal_read_segnent.

o0 Define a "read chunk” as an ordered list of rpc_rdml_read_segnent
obj ects that have identical Position values.

0 Define the "Read list" as a list of zero or nore read chunks,
expressed as an ordered list of rpc_rdmal_read_segment objects
whose Position value may vary.

Wth this change, there would no | onger be a sinple XDR object that
explicitly represents a read chunk. A read chunk and a write chunk
are now equi val ent objects: One read chunk will always map to a
single RPC argunent, just like a wite chunk al ways maps to a single
RPC result. Al discussion should take care to use the term
"segnent” and "read segment” instead of the term "read chunk"” where
appropri at e.

As a clean up, RFC 5666bis should renove the rpc_rdma_header nonsg
struct, and use the rpc_rdma_header struct in its place. Since
rpc_rdma_header does not conprise the entire RPC over-RDVA header, it
shoul d be renaned rpc_rdmal_chunks to avoid confusion

XDR definitions should be enclosed in CODE BEA NS and CODE ENDS
delinmters. An appropriate copyright block should acconpany the XDR
definitions in RFC 5666bis. An XDR extraction shell script should be
provided in the text.

3.2. The Position Zero Read Chunk

RFC 5666 Section 5.1 defines the operation of the Position Zero read
chunk. A requester uses the Position Zero read chunk in place of
inline content. A requester is required to use the Position Zero
read chunk when the total size of an RPC call exceeds the size of the
responder’s receive buffers and the ULB prohibits the use of RDVA for
| arge RPC argunments. The requester conveys the co-ordinates of the

Lever Expires April 11, 2016 [Page 17]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Position Zero read chunk with a Send operation, then the responder
uses an RDVA Read operation to pull the RPC call nessage

RFC 5666 Section 3.4 says:

Semantical ly speaking, the protocol has no restriction regarding
data types that may or may not be represented by a read or wite
chunk. In practice however, efficiency considerations lead to the
conclusion that certain data types are not generally "chunkabl e"
Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible. Wth
today’s hardware, this size nmay be a kilobyte or nore. However
any object MAY be chosen for chunking in any given nessage.

The eligibility of XDR data itens to be candi dates for being noved
as data chunks (as opposed to being nmarshaled inline) is not
specified by the RPC-over-RDVA protocol. Chunk eligibility
criteria MUST be determ ned by each upper-layer in order to
provide for an interoperable specification.

The intention of this text is to spell out that RDVMA eligibility
applies only to individual argunents and results, and RDVA
eligibility criteria is determ ned by a separate specification, and
not in RFC 5666

The Position Zero read chunk is an exception to both of these

gui delines. The Position Zero read chunk, by virtue of the fact that
it typically conveys an entire RPC call nessage, may contain nmultiple
argunents, independent of whether any particular argunent in the RPC
call is RDVMA-eligible

Unl i ke the read chunks described in the RFC 5666 excerpt above, the
content of a Position Zero read chunk is typically marshal ed and
copi ed on both ends of the transport, negating the benefit of RDVA
data transfer. |In particular, the Position Zero read chunk is not
for conveying performance critical Upper Layer operations.

Thus the requirenents for what may or may not appear in the Position
Zero read chunk are indeed specified by RFC 5666, in contradiction to
t he second paragraph quoted above. Upper Layer Binding

speci fications may have sonething to say about what nmy appear in the
Position Zero read chunk, but the basic definition of Position Zero
shoul d be made clear in RFC 5666bis as distinct froma read chunk
whose Position field is non-zero.

Because a read chunk is defined as one RDVA segnent with a Position

field, at least one inplenentation allows only a single chunk segnent
in Position zero read chunks. This is a problemfor two reasons:

Lever Expires April 11, 2016 [Page 18]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

0 Some RPCs are constructed in nultiple non-contiguous buffers.
Al'l owi ng only one read segnent in Position Zero would nean a
single | arge contiguous buffer would be have to be allocated and
regi stered, and then the conponents of the XDR stream woul d have
to be copied into that buffer

0 Some requesters mght not be able to register nmenory regions
| arger than the platfornis physical page size. A low ng only one
read segment in Position Zero would limt the maxi mum size of RPC
over- RDMA nessages to a single page. Allowing nultiple read
segnents neans the nessage size can be as |large as the maxi num
number of read chunks that can be sent in an RPC-over- RDMA header

RFC 5666 does not limt the nunber of read segments in a read chunk
nor does it limt the nunber of chunks that can appear in the Read
list. The Position Zero read chunk, despite its nane, is not limted
to a single xdr_read _chunk

3.2.1. Recommendati ons

RFC 5666bi s should state that the guidelines in RFC 5666 Section 3.4
apply only to RDVA M5G type calls. Wen the Position Zero read chunk
is introduced in RFC 5666 Section 5.1, enunerate the differences
between it and the read chunks previously described in RFC 5666
Section 3.4.

RFC 5666bi s shoul d descri be what restrictions an Upper Layer Bi nding
may nmake on Position Zero read chunks.

3.3. RDVA_NOWVSG Cal | Messages

The second paragraph of RFC 5667 Section 4 says, in reference to
NFSv2 and NFSv3 WRI TE and SYM.I NK operati ons:

. a single RDVA Read list entry MAY be posted by the client to
supply the opaque file data for a WRI TE request or t he pat hnane
for a SYMLI NK request. The server MJST ignore any Read list for
other NFS procedures, as well as additional Read list entries
beyond the first in the list.

However, large non-wite NFS operations are conveyed via a Read |i st
containing at least a Position Zero read chunk. Strictly speaking,

t he above requirenent neans |arge non-wite NFS operations may never
be conveyed because the responder MJST ignore the read chunk in such
requests.

It is likely the authors of RFC 5667 intended this linit to apply
only to RDMA M5G type calls. If that is true, however, an NFS

Lever Expires April 11, 2016 [Page 19]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

i mpl ementation could legally skirt the stated restriction sinply by
usi ng an RDMA NOVSG type call that conveys both a Position Zero and a
non-zero position read chunk to send a non-wite NFS operation

Unl ess either RFC 5666 or the protocol’s Upper Layer Binding
explicitly prohibits it, allowing a read chunk in a non-zero Position
in an RDMA NOVSG type call means an Upper Layer Protocol may ignore
Bi ndi ng requirenments |ike the above.

Typically there is no benefit to allowing nmultiple read chunks for
RDMA NOVBG type calls. Any non-zero Position read segnents can
al ways be conveyed as part of the Position Zero read chunk

However, there is a class of RPC operations where RDMA NOVSG wit h
multiple read chunks is useful: when the body of an RPC call nessage
is larger than the inline buffer size, even after bul k payl oad has
been placed in read chunks.

A similar discussion applies to RDMA_NOVSG replies with large reply
bodi es and RDVMA-eligible results. Such replies would use both the
Wite list and the Reply chunk sinmultaneously. However, wite chunks

do not have Position fields. It remains to be seen whether this is
enough to enabl e requesters to re-assenble generic RPC replies
correctly.

3.3.1. Recommendat i ons

RFC 5666bi s should continue to all ow RDMA NOVBG type calls with
additional read chunks. The rules about RDMA-eligibility in RFC
5666bi s shoul d di scuss when the use of this construction is
beneficial, and when it shoul d be avoi ded.

Aut hors of Upper Layer Bindings should be warned about ignoring these
cases. RPC 5666bis should provide a default behavior that applies
when Upper Layer Bindings onit this discussion

3.4. RDVA_MSG Call with Position Zero Read Chunk
An RPC header starts at XDR stream offset zero. The first itemin
the header of both RPC calls and RPC replies is the XID field
[RFC5531]. RFC 5666 Section 4.1 says:

A header of message type RDVA MSG or RDVA MSGP MUST be fol |l owed by
the RPC call or RPC reply nessage body, beginning with the XI D

This is a strong inplication that the RPC header in an RDVMA MG type
message starts at XDR stream of fset zero

Lever Expires April 11, 2016 [Page 20]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

An RDVA_MSG type call message includes the RPC header and zero or
more read chunks. Recall the definition of a read chunk as a |ist of
read segments whose Position field contains the same value. The
value of the Position field determ nes where the read chunk appears
in the XDR streamthat conprises an RPC call nessage

A Position Zero read chunk, therefore, starts at XDR stream of fset
zero, just like RPC header does. |In an RDMA NOVSG type call nessage
whi ch does not include an RPC header, a Position Zero read chunk
conveys the RPC header.

There is no prohibition in RFC 5666 agai nst an RDMA MSG type cal
messsage with a Position Zero read chunk. However, it’'s not clear
how a responder should interpret such a nessage. RFC 5666 requires
the RPC header to start at XDR stream offset zero, but there is a
Position Zero read chunk, which also starts at XDR stream of f set
zero.

3.4.1. Recommendati ons

RPC 5666bi s should clearly define what is neant by an XDR stream
RFC 5666bi s should state that XDR stream Position is measured
relative to the start of the RPC header, which is the first byte of
the header’s XID field.

RFC 5666bi s shoul d prohibit requesters from providing a Position Zero
read chunk in RDMA MSG type calls. Likew se, RFC 5666bis should
prohi bit responders fromutilizing a Reply chunk in RDVA MSG type
replies.

The diagranms in RFC 5666 Section 3.8 which nunber chunks starting
with 1 are confusing and should be revised. Numbering chunks this
way is not natural to the way read chunks and wite chunks work.

3.5. Padding Inline Content After A Chunk

To help clarify the discussion in this section, the term"read chunk”
here al ways neans the new definition where one or nore read segnments
that have identical values in their Position fields represents
exactly one RPC argunent.

A read chunk conveys a |l arge RPC argunent via one or nore RDVA
transfers. For instance, the data payl oad of an NFS WRI TE operation
may be be transferred using a read chunk [RFC5667] .

NFSv3 WRI TE operations place the data payload at the end of an RPC

call nessage [RFC1813]. The RPC call’s XDR stream starts in an
inline buffer, continues in a read chunk, then ends there.

Lever Expires April 11, 2016 [Page 21]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

An NFSv4 WRI TE operation may occur as a middle operation in an NFSv4
COVPOUND [RFC5661] . The read chunk containing the data payl oad
argunent of the WRI TE operation mght finish before the RPC call’s
XDR stream does. In this case, the RPC call’s XDR stream starts in
an inline buffer, continues in the Read list, then finishes back in
the inline buffer.

The length of a chunk is the sumof the I engths of the segnents that
make up that chunk. The data payload in a chunk may have a |l ength
that is not evenly divisible by four. One or nore of the segnents
may have an unaligned | ength.

RFC 5666 Section 3.7 describes how to manage XDR roundup in a read
chunk when its length is not XDR-aligned. The sender is not required
to send the extra pad bytes at the end of a chunk because a) the
receiver never references their content, therefore it is wasteful to
transmt them and b) each read chunk has a Position field and | ength
that determ nes exactly where that chunk starts and ends in the XDR
stream

A question arises, however, when considering where the next argunent
after a read chunk shoul d appear. XDR requires each argunent in an
RPC call to begin on 4-byte alignment [RFC4506]. But a read chunk’s
XDR padding is optional (see above). The next read chunk’s position
field determines where it is placed in the XDR stream However

inline content followi ng a read chunk does not have a Position field
to guide the receiver in the reassenbly of the RPC call nessage

Par agraph 4 of RFC 5666 Section 3.7 says:

When roundup is present at the end of a sequence of chunks, the

I ength of the sequence will ternminate it at a non-4-byte XDR
position. Wen the receiver proceeds to decode the remaining part
of the XDR stream it inspects the XDR position indicated by the
next chunk. Because this position will not match (el se roundup
woul d not have occurred), the receiver decoding will fall back to
i nspecting the remaining inline portion. If in turn, no data
remains to be decoded fromthe inline portion, then the receiver
MUST concl ude that roundup is present, and therefore it advances
the XDR decode position to that indicated by the next chunk (if
any). In this way, roundup is passed w thout ever actually
transferring additional XDR bytes.

Thi s paragraph adequately descri bes XDR paddi ng requirenents when a
read chunk is followed by another read chunk. But it |eaves open any
requirenents for XDR padding and alignnent when a read chunk is
followed in the XDR stream by nore inline content.

Lever Expires April 11, 2016 [Page 22]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

The correct answer is that following a read chunk of an unaligned
length, if the next argunment in the XDR streamis in the inline
buffer, it nust begin on a 4-byte boundary in that buffer, even when
XDR padding is not included in the preceding read chunk. This is
because the object that follows a read chunk nust always start on an
XDR al i gnment boundary.

Furt hermore, the XDR pad for the preceding read chunk cannot appear
inthe inline content, even if it was also not included in the chunk
itself. This is because the RPC argunent that preceded the read
chunk will have been padded to 4-byte alignnent. The next position
inthe inline buffer will already be on a 4-byte boundary.

3.5.1. Recommendat i ons

State the above requirenent in RFC 5666bis in its equivalent of RFC
5666 Section 3.7. \When a responder forns a reply, the sane
restriction applies to inline content interleaved with wite chunks.

A good generic rule is that all RPC objects in every call or reply
message must start on an XDR al i gnment boundary. This has
inplications for the values allowed in read chunk Position fields,
for how XDR roundup works for chunks, and for how RPC objects are
placed in inline buffers. XDR alignnment in inline buffers is always
relative to Position Zero (or, where the RPC header starts).

3.6. Wite List XDR Roundup
The final paragraph of RFC 5666 Section 3.7 says this:

For RDMA Wite Chunks, a sinpler encoding nethod applies. Again
roundup bytes are not transferred, instead the chunk |ength sent
to the receiver in the reply is sinply increased to include any
r oundup.

A responder should never wite XDR pad bytes, as the requester’s
upper |ayers does not reference them However, for the chunk | ength
to be rounded up as described, the requester nust provide adequate
extra space in the chunk for the XDR pad. A requester can provide
space for the XDR pad using one of two approaches:

1. It can extend the last segnment in the chunk

2. It can provide another segnment after the segnments that receive
RDVA Wite payl oads.

Lever Expires April 11, 2016 [Page 23]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

Case 1 is adequate when there is no danger that the responder’s RDVA
Wite operations will overwite existing data on the requester in
buffers follow ng the advertised receive buffers.

In zero-copy scenarios, an extra segnent nust be provided separately
to avoid overwiting existing data (case 2). |In cases where live

data follows the area where the responder wites the data payl oad, an
extra registration is needed for just a handful of bytes of no val ue.

Regi stering the extra buffer is a needless cost. It would be nore
efficient if the XDR pad at the end of a wite chunk were treated the
same as it is for read chunks. Because every RPC result object nust
begin on an XDR al i gnment boundary, the object following the wite
chunk in the reply’s XDR stream nust begin on an XDR al i gnnent
boundary. There should be no need for a XDR pad to be present for
the receiver to re-assenble the RPC reply’s XDR stream correctly.

Unfortunately at |east one server inplenentation relies on the

exi stence of that extra buffer, even though it does not wite to it.
Anot her server inplenmentation does not rely on it (operation proceeds
if it is mssing) but when it is present, this server does wite
zeroes to it.

Therefore the extra buffer for a wite chunk’s XDR pad, either as a
separate segnent, or as an extension of the segnment that represents
the data payl oad buffer, nmust remain for now.

Not e that because the Reply chunk is a wite chunk, these roundup
rules apply to it as well. However, a requester typically provides a
single contiguous buffer for whole replies, which consist of XDR
encoded content. A separate tail buffer to catch an XDR pad is
unlikely to be needed.

3.6.1. Recommendati ons

RFC 5666bi s shoul d provide a di scussion of the requirenents around
wite chunk roundup, with exanples. The discussion should be
separate fromthe discussion of read chunk roundup

Explicit RFC2119-style interoperability requirenents should be
provided in the text. For exanple, the requester MJST provide buffer
space for XDR roundup of write chunks, and the responder SHOULD NOT
wite into that buffer

Lever Expires April 11, 2016 [Page 24]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

3.7. Wite List Error Cases
RFC 5666 Section 3.6 says:

When a wite chunk list is provided for the results of the RPC
call, the RPC server MJST provide any correspondi ng data via RDVA
Wite to the nenory referenced in the chunk list entries.

This requires the responder to use the Wite list when it is
provided. Another way to say it is a responder is not permtted to
return bulk data inline or in the reply chunk when the requester has
provided a Wite |ist.

This requirement is less clear when it comes to situations where a
particular RPC reply is allowed to use a provided Wite |ist, but
does not have a bulk data payload to return. For exanple, RFC 5667
Section 4 permts requester to provide a Wite list for NFS READ
operations. However, NFSv3 READ operations have a union reply

[RFC1813] :

<CODE BEG NS>

struct READ3resok {
post _op_attr file_ attributes;

count 3 count ;
bool eof ;
opaque dat a<>

b

struct READ3resfail {
post _op_attr file_attributes;
b

uni on READ3res switch (nfsstat3 status) {
case NFS3_OK:
READ3r esok resok
defaul t:
READ3resfail resfail;
};

<CODE ENDS>

The arm of the READ3res union which is used when a read error occurs
does not have a bulk data argunent. When an NFS READ operation
fails, no data is returned.

Lever Expires April 11, 2016 [Page 25]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

RFC 5666 does not prescribe how a responder should behave when the
result object for which the Wite list is provided does not appear in
the reply. RFC 5666 Section 3.4 says:

I ndi vidual wite chunk |list elenents MAY thereby result in being
partially or fully filled, or in fact not being filled at all
Unused wite chunks, or unused bytes in wite chunk buffer lists,
are not returned as results, and their nmenory is returned to the
upper layer as part of RPC conpletion

It al so says

The RPC reply conveys this by returning the wite chunk list to
the client with the lengths rewitten to match the actua
transfer.

The disposition of the advertised wite buffers is therefore clear
The requirenents for how the Wite |list nust appear in an RPC reply
are sonewhat | ess than clear.

Here we are concerned with two cases:

0 Wien a result consunes fewer RDVA segnents than the requester
provided in the Wite chunk for that result, what values are
provi ded for the chunk’s segnent count, and the |lengths of the
unused segnents

0 Wien a result is not used (say, the reply uses the armof an XDR
uni on that does not contain the result corresponding to a Wite
chunk provided for that result), what values are provided for the
chunk’ s segnent count, and the lengths of the unused segnents

The | anguage above suggests the proper value for the Wite chunk’s
segnment count is always the sane value that the requester sent, even
when the chunk is not used in the reply. The proper value for the

| ength of an unused segnent in a Wite chunk is always zero.

I nspection of one existing server inplenentation shows that when an
NFS READ operation fails, the returned Wite |ist contains one entry:
a chunk array containing zero el enents. Another server

i npl ementation returns the original Wite list chunk in this case.

In either case, requesters appear to ignore the Wite list when no
bul k data payl oad is expected. Thus it appears that, currently,
responders may put whatever they like in the Wite list.

In the future, RPC-over-RDVA Version One will have to handl e RPC
replies where multiple Wite list entries are avail able but the

Lever Expires April 11, 2016 [Page 26]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

3.

4.

4.

responder has a choice about which result objects to return as bul k
reply data. The arguments and results of an NFSv4 COVPOUND are a
swi tched uni on, and sone of the operations in a conpound (such as
READ, whose data payload reply is RDMA-eligible) also use a swtched
uni on.

For exanpl e, conbining several READ operations in an NFSv4 COVPOUND
m ght be problematic (if it weren't for the requirenent that the
entire conpound should fail if just one operation in the conpound
fails).

7.1. Recommendati ons

RFC 5666bi s should explicitly discuss responder behavi or when an RPC
reply does not need to use a Wite list entry provided by a
requester. This is generic behavior, independent of any Upper Layer
Bi nding. The explanation can be partially or wholly copied from RFC
5667 Section 5 s discussion of NFSv4 COVPOUND

A nunber of places in RFC 5666 Section 3.6 hint at how a responder
behaves when it is to return data that does not use every byte of
every provided Wite chunk segnent. RFC 5666bis should state
specific requirenments about how a responder should formthe Wite
list in RPCreplies, and/or it should explicitly require requesters
to ignore the Wite list in these cases. A good quality requester

i mpl ement ati on woul d save the Wite list and use that saved copy to
invalidate the witten nenory regi on upon RPC conpletion. RFC
5666bi s should require that the responder not alter the count of
segnents in the Wite chunk. One or nore explicit exanples should be
provided in RFC 5666bis.

RFC 5666bi s shoul d provide clear instructions on how Upper Layer
Bi ndings are to be witten to take care of sw tched unions.

Qper ati onal Consi derations
1. Conputing Request Buffer Requirenents

The size maxi mum of a single Send operation includes both the RPC
over - RDMA header and the RPC header. Conbi ned, those two headers
nmust not exceed the size of one receive buffer

Senders often construct the RPC-over-RDVA header and the RPC call or
reply nmessage in separate buffers, then conmbine themvia an iovec
into a single Send. This does not nmean each el ement of that iovec
can be as large as the inline threshol d.

Lever Expires April 11, 2016 [Page 27]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

An HCA or RNIC may have a small linit on the size of a registered
menory region. In that case, each argunent or result may be
conmpri sed of many chunk segnents.

This has inplications for the size of the Read and Wite lists, which
take up a variabl e amount of space in the RPC over-RDVMA header. The
sum of the size of the RPC-over-RDVA header, including the Read and
Wite lists, and the size of the RPC header nust not exceed the
inline threshold. This limts the maxi num Upper Layer payl oad size.

4.1.1. Reconmmendati ons

RFC 5666bi s shoul d provide inplementation gui dance on how the inline
threshold (the maxi num send size) is conputed.

4.2. Default Inline Buffer Size

Section 6 of RFC 5666 specifies an out-of-band protocol that allows
an endpoint to discover a peer endpoint’s receive buffer size, to
avoi d overrunning the receiving buffer, causing a connection |oss.

Not all RPC-over-RDVA Version One inplenentations also inplenent CCP
as it is optional. Gven the inportance of know ng the receiving
end’ s receive buffer size, there should be sone way that a sender can
choose a size that is guaranteed to work with no CCP interaction

RFC 5666 Section 6.1 describes a 1KB receive buffer limt for the
first operation on a connection with an unfamliar responder. |In the
absence of CCP, the client cannot discover that responder’s true
limt without risking the loss of the transport connection

4.2. 1. Recommendat i ons

RFC 5666bi s shoul d specify a fixed send/receive buffer size as part
of the RPC-over-RDVA Version One protocol, to use when CCP is not
avai l able. For exanmple, the follow ng could be added to the RFC
5666bi s equi val ent of RFC 5666 Section 6.1: "In the absence of CCP
requesters and responders MJST assune 1KB receive buffers for al
Send operations.”

It should be safe for Upper Layer Binding specifications to provide a
different default inline threshold. Care nust be taken when an
endpoint is associated with multiple RPC prograns that have different
default threshol ds.

Lever Expires April 11, 2016 [Page 28]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

4.3. Wen To Use Reply Chunks
RFC 5666 Section 3.6 says:

When a wite chunk list is provided for the results of the RPC
call, the RPC server MJST provide any correspondi ng data via RDVA
Wite to the nenory referenced in the chunk list entries.

The Reply chunk is a wite chunk (a degenerate wite chunk list). It
is not clear whether the authors intended this requirenent to apply
to the Reply chunk. Sone server inplenentations regard the Reply
chunk as optional

Requesters may al ways provide a Reply chunk, at the cost of

regi stering nenory the server may choose not to use. O a client may
choose not to provide a Reply chunk when it believes there is no
possibility the server will overrun the client’s receive buffer when
returning the RPC reply.

A server may always use a provided Reply chunk, even when it is nore
efficient to convey an RPC reply inline (for instance, if an RPC
reply is very small). O a server may choose to ignore the provided
Reply chunk when it believes there is no possibility the RPC reply
can overrun the client’s receive buffer.

The choice of when to provide or utilize a reply chunk depends on
whet her the sender believes the RPC nessage will fit entirely within
the inline buffer.

Section 3.6 of RFC 5667 says a server MJST use a Wite |list provided
by a client. RFC 5666bis night prescribe that if the client provides
a Reply chunk, the server MJST use it, as the client is telling the
server that it believes the expected RPC reply may not fit in its
receive buffer. That way the server cannot overrun client’s receive
buf fer by choosing to Send an internedi ate-sized inline request

i nstead of using a supplied reply chunk

W thout CCP, however, both sides are guessing the other’s inline
threshold. To maintain 100%interoperability, a client endpoint nust
al ways provide a Reply chunk, and a server endpoint nust always use
it. However, this requirenment can be very inefficient. A mddle
ground nust be reached.

4. 3. 1. Recommendat i ons

To provide a stronger guarantee of interoperation while ensuring
efficient operation, RFC 5666bis should explicitly specify when a

Lever Expires April 11, 2016 [Page 29]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

client nmust offer a Reply chunk, and when a server nust use an
of fered Reply chunk

4.4, Conputing Credit Val ues

The third paragraph of Section 3.3 of RFC 5666 | eaves open the exact
mechani sm of how often the requested and granted credit linmts are
supposed to be adjusted. A reader nmight believe that these val ues
are adj usted whenever an RPC call or reply is received, to reflect
the nunber of posted receive buffers on each side.

Al t hough adjustnents are allowed by RFC 5666 due to changing
availability of resources on either endpoint, current inplenentations
use a fixed value. Advertised credit values are always the sum of
the in-process receive buffers and the ready-to-use receive buffers.

4.4,1. Reconmmendations

RFC 5666bi s should clarify the nethod used to cal cul ate these val ues.
RFC 5666bi s m ght al so di scuss how fl ow control is inpacted when a
server endpoint utilizes a shared receive queue.

4.5. Race W ndows
The second paragraph of RFC 5666 Section 3.3 says:

Additionally, for protocol correctness, the RPC server nust always
be able to reply to client requests, whether or not new buffers
have been posted to accept future receives.

It is true that the RPC server nust always be able to reply, and that
therefore the client nust provide an adequate nunber of receive
buffers. The dependent cl ause "whether or not new buffers have been
posted to accept future receives" is problematic, however.

It’s not clear whether this clause refers to a server |eaving even a
smal I wi ndow where the sum of posted and in-process receive buffers
is less than the credit limt; or refers to a client |eaving a wi ndow
where the sum of posted and in-process receive buffers is | ess than
its advertised credit limt. |In either case, such a w ndow could
result in | ost nessages or be catastrophic for the transport
connecti on.

4.5. 1. Recommendat i ons

Clarify or renove the dependent clause in the section in RFC 5666bis
that is equivalent to RFC 5666 Section 3. 3.

Lever Expires April 11, 2016 [Page 30]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

5. Pre-requisites for NFSv4
5.1. Miltiple RDVA-eligible Argunents and Results

One NFSv4 COVPOUND may i nclude nore than one NFSv4 operation that
conveys RDMA-eligible argunents or replies. There nay be additiona
consi derati ons when marshaling or decodi ng such conmpounds on RPC
over - RDMA Version One transports.

5.1.1. Recommendati ons

Addi tional review of RFC 5666 and prototyping may be needed to
understand if additional protocol requirenents are necessary when
multiple read chunks (Read list containing chunks with nore than one
Position value) or multiple wite chunks (Wite |ist containing
mul ti ple chunk arrays) are present.

More di scussion and thought needs to go into handling an NFSv4
COVPOUND reply conveying nore than one bul k data result object. Wen
operation results are defined as XDR unions, it can be anbi guous

whi ch bul k data result object belongs to which Wite list entry.

5.2. Bi-directional Operation

NFSv4. 1 noves the backchannel onto the sane transport as forward
requests [RFC5661]. Typically RPC client endpoints do not expect to
receive RPC call nessages. To support NFSv4.1 cal | back operati ons,
client and server inplenentations nust be updated to support bi-
directional operation

Because of RDMA' s unique requirenments to pre-post receive resources
speci al considerations are needed for bi-directional operation
Conventi ons have been provided to allow bi-direction, with a limt on
backchannel nessage size, such that no changes to the RPC over- RDVA
Versi on One protocol are needed [I-D.ietf-nfsv4-rpcrdnma-bidirection].

5.2.1. Recommendati ons

RFC 5666bi s shoul d reference or include an infornmationa
speci fication of backwards-direction RPC requests.

5.3. Msssing NFS Binding Specifications
To fully support mnor versions of NFSv4 on RDMA transports, RFC 5666

requires an Upper Layer Binding Specification for the follow ng
cases. This work is out of scope for RFC 5666bis.

Lever Expires April 11, 2016 [Page 31]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

0 NFS ancillary protocols that are not specified in a published | ETF
standard, but that are typically conveyed on the sanme transport as
NFS (e.g. NFSACL)
0 NFS ancillary protocols that are not specified in a published | ETF
standard, but that can benefit fromthe | ow | atency operation of
RDVA transports (e.g. NLM
0 NFSv4 m nor versions one and newer
0 Existing and new pNFS | ayouts
0 NFS protocol extensions that do not increment the mnor version
6. Requirenments for Upper Layer Binding Specifications
RFC 5666 requires a Binding specification for any RPC program wanti ng
to use RPC-over-RDVA. The requirenent appears in two separate
pl aces: The fourth paragraph of Section 3.4, and the final paragraph
of Section 3.6. As critical as it is to have a Binding
specification, RFC 5666’ s text regarding these specifications is
sparse and not easy to find.
6.1. Oganization O Binding Specification Requirenents
Thr oughout RPC 5666, various Bi nding requirenents appear, such as:

The mapping of wite chunk Iist entries to procedure argunents
MUST be deternined for each protocol

A simlar specific requirenent for read list entries is mssing.
Usual |y these statements are followed by a reference to the NFS
Bi ndi ng specification [RFC5667]. There is no summary of these
requi renents, however.

Addi tional advice appears in the middle of Section 3.4:

It is NOT RECOMVENDED t hat upper-layer RPC client protoco
specifications omt wite chunk lists for eligible replies,

This requirenment, being in the mddle of a dense paragraph about how

wite lists are forned, is easy for an author of Upper Layer Binding
specifications to mss.

Lever Expires April 11, 2016 [Page 32]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

6.1.1. Recommendati ons

RFC 5666bi s shoul d specify explicit generic requirenents for what
goes in an Upper Layer Binding specification in one separate section
In particular, nove the third, fourth and fifth paragraph of RFC 5666
Section 3.4 to this new section discussing Binding specification
requirenents.

6.2. RDMA Eligibility

The third paragraph of Section 3.4 states that any object MAY be
chosen for chunking (RDVA eligibility) in any given nmessage. That
par agraph al so states

Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible.

Further advice about RDVA eligibility does not appear. However it is
safe to say that object size is not the only consideration for RDVA
eligibility.

For instance, an NFS READDIR result can be large, but typically a
server copies this result pieceneal into place, encoding each
section; and the receiving client nust performthe converse actions.
Though there is potentially a | arge anbunt of data, the benefit of an
RDVA transfer is |ost because of the need for both host CPUs to be

i nvol ved in marshaling and decodi ng.

6.2.1. Recommendations

RFC 5666bi s shoul d define what an Upper Layer Binding is, and how it
may be specifi ed.

RFC 5666bi s should explicitly specify that an Upper Layer Binding is
required for every RPC programinterested in operating on RDVA
transports. Separate bindings may be required for different versions
of that program

RFC 5666bi s shoul d provi de generic gui dance about what makes a
procedure argurment or result eligible for RDVA transfer

RFC 5666bi s should state that the eligibility of any object not
nmentioned explicitly in an ULBis "not eligible." The exception is
that Position Zero read chunks and Reply chunks may contain any and
all argunment and result objects regardless of their RDVA eligibility.

Lever Expires April 11, 2016 [Page 33]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

RFC 5666bi s shoul d renind authors of Upper Layer Bindings that the
Reply chunk and Position Zero read chunks are expressly not for
performance-critical Upper Layer operations.

6.3. Binding Specification Conpletion Assessnent

RFC 5666 Section 3.4 states:

Typically, only those opaque and aggregate data types that may
attain substantial size are considered to be eligible. However,
any object MAY be chosen for chunking in any given nessage.

Chunk eligibility criteria MJST be deternined by each upper-Iayer
in order to provide for an interoperable specification

An Upper Layer Binding specification should consider each data type
in the Upper Layer’'s XDR definition, in particular conpound types
such as arrays and lists, when restricting what argunents and results
are eligible for RDVA transfer.

In addition, there are requirenents related to using NFS wi th RPC
over-RDMA in [RFC5667], and there are sone in [RFC5661]. It could be
hel pful to have gui dance about what kind of requirenents belong in an
Upper Layer Binding specification versus what bel ong in the Upper
Layer Protocol specification

6. 3. 1. Recommendat i ons

RFC 5666bi s shoul d descri be what nmakes a Bi ndi ng specification
conplete (i.e. read for publication).

7. Renoval of Uninpl emented Protocol Features
7.1. Read-Read Transfer Mde

Al'l existing RPC- over-RDVA Version One inplenmentations use a Read-
Wite data transfer nodel. The server endpoint is responsible for
initiating all RDVA data transfers. The Read-Read transfer nodel has
been deprecated, but because it appears in RFC 5666, inplenmentations
are still responsible for supporting it. By renoving the

speci fication and di scussi on of Read-Read, the protocol and

speci fication can be nmade sinpler and nore cl ear

7.1.1. Recommendat i ons

Renove Read- Read from RFC 5666bis, in particular fromits equival ent
of RFC 5666 Section 3.8. Reserve RDMA DONE and nake it unused.

Lever Expires April 11, 2016 [Page 34]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

7.2. RDVA_MBGP

RDVMA MSGP is typically difficult to inplenment in requesters, and the
aut hor has found none that do. Responders are required to accept
RDVA MSGP, though npst do not take advantage of it.

Al so, notably, without CCP, there is no way for peers to discover a
server endpoint’s preferred alignnent paraneters, unless the

i npl ement ati on provides an adm nistrative interface for specifying a
renote’s alignment paraneters. RDMA MSGP is useless without that a
priori know edge.

7.2.1. Recommendati ons

RFC 5666bi s should allow inpl enmentations that choose not to inplenent
CCP to not inplenment RDVA MSGP. O, RFC 5666bis should renove
RDVA_MSGP

8. Optional Additions To The Protoco

These itens m ght be beyond the scope of RFC 5666bi s because the
required protocol changes could render existing inplenentations non-
i nteroperable, or require a protocol version increnent.

8.1. Support For GSS-API Wth RPC- Over- RDVA

Section 11 of RFC 5666 introduces the concept of enployi ng RPCSEC GSS
[RFC2203] with an RPC-over-RDVA transport. However, it recommends
usi ng non- GSS- based security nmechanisns to retain the efficiency
benefits of RDVA transfer

In sone deploynments, the use of GSS-based Kerberos integrity or
privacy is a fixed requirement. One existing RPC over- RDVA

i npl ement ati on has chosen to send all integrity and privacy-protected
RPC calls and replies via | ong nessages. The requirenment to use |ong
replies may present an interoperability problemto inplenentations
that choose not to use |ong nessages in nost cases, even for GSS-

wr apped RPC operations.

Anot her inplenentation is exploring the possibility of offloading
integrity and privacy conputation to the RNIC

Furt her discussion and prototyping of RPC-over-RDVA with GSS-API

[RFC2743] is needed. It is desirable to have done this before RFC
5666bis is conplete, although it would be a | arge undertaking.

Lever Expires April 11, 2016 [Page 35]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

8.2. Renote Invalidation

On-the-fly menory registration nmust be performed when read or wite
chunks are transferred as part of an RPC request. A registration
cost is incurred before the RPC call is sent, and an invalidation
cost is incurred after the RPC reply is received.

To relieve the client of the cost of the latter, it is possible for
the server endpoint to ask the client endpoint’s RNIC to invalidate
the registered nenory associated with an RPC, as part of sending the
RPC reply. \When the server perforns this invalidation, the client is
no longer required to invalidate during RPC reply processing,

avoi ding the cost of that extra operation before retiring the RPC
We'll refer to the server invalidating a client’s R key as "renote

i nval i dation."”

To performrenote invalidation, the server uses a Send with

I nval i date operation instead of a plain Send operation when conveyi ng
an RPC reply. A Send with Invalidate operation targets a single

R key that the client’s HCAis to invalidate (see [RFC5040]). The
server can invalidate nenory regions associated with either read or
wite chunks sent by the client.

When an RDMA SEND operation arrives at a client, the client endpoint
receives a conpletion for a pending receive operation. The

compl etion indicates whether the server used a plain Send or a Send
Wth Invalidate. The conpletion may al so indicate which R key the
server chose to invalidate.

8.2.1. Hardware Support

Not all RN Cs support receiving an RDMA SEND t hat requests an R key

i nval i dation. An RPC-over-RDVA client endpoint nmust somehow indicate
to RPC-over-RDVA servers that Send with Invalidate nmay be used
instead of Send. Oherwise the client’s HCA would reject the Send
with Invalidate conveying the RPC reply, and the RPC (and possibly
the transport connection) would fail.

8.2.2. Avoiding Spurious Invalidation

In sone cases, an RPC-over-RDVA client mght not wish a server to
perform R key invalidation, ever. For instance, if the client uses a
gl obal or shared R key to give the server access to its nenory, other
users of the R key would be adversely affected if the R key suddenly
becane invali d.

Lever Expires April 11, 2016 [Page 36]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

8.2.3. Invalidating Miultiple R keys

Send with Invalidate takes only a single R key, but an RPC-over- RDVA
client mght have registered several nenory regions for an RPC, each
with its own R key.

For exanple, an RPC request may require a Read list and a Reply
chunk. Read chunks mnust be registered for read access, but a Reply
chunk is registered to allow wites. Thus two R keys are required in
this case.

RPC- over- RDMA clients nust be prepared to receive RPC replies where
one R key has been invalidated but others have not.

8.2.4. I nval i dati on Races

The protocol design nust prevent the possibility that the server
m ght invalidate an R key that the client has recycled and is stil
actively using.

8.2.5. Backward Conpatibility

For backward conpatibility, RPCover-RDMA servers nust not use Send
with I nvalidate when an RPC-over-RDMA client endpoint is not prepared
to sort out which nmenory regions have been renotely invalidated.

For backward conpatibility, RPC-over-RDMA clients nust not assune
that an RPC-over- RDVA server endpoint has perforned Send with
I nval i dat e.

8.2.6. Conclusion

It is possible that to address all of the above issues, a change nust
be nmade to the on-the-wire RPC- over-RDVA Version One protocol

However if no change is required, renote invalidation could be
successfully introduced to the RPC- over-RDVA Version One protocol

8.3. Wrk Cancellation

Rarely, an RPC consunmer mght want to cancel outstanding work. An
application nmight exit while there are pending RPC operations, for
exanple, if a software fault or user-generated interrupt occurs. O,
the RPC service might be slow or unresponsive, and the application

m ght have placed tine-limts that pre-maturely retire RPCs that take
too long to conplete.

As a result of canceled work, the client endpoint nay tear down
regi stered RDMA nenory regi ons before the server endpoint has

Lever Expires April 11, 2016 [Page 37]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

10.

11.

performed RDVA operations on the nenory. \Wen the server endpoint
attenpts to conplete the requested work, RDVA operations wll
encount er asynchronous menory protection errors because the R keys
the server has are no | onger valid.

This can be fatal for the transport connection. Any other ongoing
wor k on that connection nmust be redriven when a new transport
connecti on has been established, opening a wi ndow for RPC requests to
be repeated on the server.

Further, regular and repetitive cancellations of work (for exanple,
an application repeatedly encountering a segnentation fault) could
have an adverse inpact on other work sharing the transport
connecti on.

One way to avoid this hazard would be to provide a way for requesters
to signal to responders that an RPC reply is no | onger required.

This is not a perfect solution, as a work cancellation request can
race with the RPC reply it is trying to cancel

A work cancel |l ati on request mght be plunbed in as a new rdma_proc
type. A client would be responsible for keeping receive buffers and
menory regions associated with an RPC until the server has responded
to the cancell ation request.

Security Considerations
There are no security considerations at this tine.

I ANA Consi derations

Thi s docunment does not require actions by | ANA

Acknowl edgenent s
The aut hor gratefully acknow edges the contributions of Dai Ngo,
Karen Deitke, Chunli Zhang, Mhesh Siddheshwar, Doni ni que Marti net,
and WIIiam Sinpson
The aut hor al so wi shes to thank Dave Noveck and Bill Baker for their
unwavering support of this work. Special thanks go to nfsv4 Wrking

G oup Chair Spencer Shepler and nfsv4d Wrking Goup Secretary Tom
Haynes for their support.

Lever Expires April 11, 2016 [Page 38]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

12. Ref er ences
12. 1. Nor mati ve Ref erences

[RFC1813] Callaghan, B., Pawl owski, B., and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, DO 10.17487/
RFC1813, June 1995,
<http://ww. rfc-editor.org/info/rfcl813>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, DO 10.17487/
RFC2119, March 1997,
<http://wwmv rfc-editor.org/info/rfc2119>.

[RFC2203] Eisler, M, Chiu, A, and L. Ling, "RPCSEC GSS Protocol
Speci fication", RFC 2203, DO 10.17487/ RFC2203, Septenber
1997, <http://ww.rfc-editor.org/info/rfc2203>.

[RFC2743] Linn, J., "Ceneric Security Service Application Program
Interface Version 2, Update 1", RFC 2743, DO 10.17487/
RFC2743, January 2000,
<http://ww.rfc-editor.org/info/rfc2743>.

[RFC4506] Eisler, M, Ed., "XDR External Data Representation
St andard", STD 67, RFC 4506, DO 10.17487/ RFC4506, My
2006, <http://ww. rfc-editor.org/info/rfc4506>.

[RFC5040] Recio, R, Mtzler, B., Culley, P., Hlland, J., and D.
Garcia, "A Renote Direct Menory Access Protocol
Speci fication", RFC 5040, DO 10.17487/ RFC5040, Cctober
2007, <http://ww. rfc-editor.org/info/rfc5040>.

[RFC5531] Thurlow, R, "RPC. Renote Procedure Call Protocol
Speci fication Version 2", RFC 5531, DO 10.17487/ RFC5531,
May 2009, <http://ww.rfc-editor.org/info/rfc5531>.

[RFC5661] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Mnor Version 1
Protocol", RFC 5661, DO 10.17487/ RFC5661, January 2010,
<http://ww.rfc-editor.org/info/rfc5661>.

[RFC5666] Tal pey, T. and B. Callaghan, "Renote Direct Menory Access
Transport for Renote Procedure Call", RFC 5666, DA
10. 17487/ RFC5666, January 2010,
<http://ww. rfc-editor.org/info/rfc5666>.

Lever Expires April 11, 2016 [Page 39]

Internet-Draft RFC 5666 | npl enent ati on Experience Cct ober 2015

[RFC5667] Tal pey, T. and B. Callaghan, "Network File System (NFS)
Direct Data Placenent", RFC 5667, DO 10.17487/ RFC5667,
January 2010, <http://ww. rfc-editor.org/info/rfc5667>.

12.2. Informative References

[I-D.ietf-nfsv4-rpcrdma-bidirection]
Lever, C., "Size-Limted Bi-directional Renote Procedure
Call On Renpte Direct Menory Access Transports”, draft-
i etf-nfsv4d-rpcrdnma-bidirection-01 (work in progress),
Sept enber 2015.

Aut hor’ s Addr ess

Charl es Lever

Oracl e Corporation
1015 G anger Avenue
Ann Arbor, M 48104
us

Phone: +1 734 274 2396
Emai | : chuck. | ever @r acl e. com

Lever Expires April 11, 2016 [Page 40]

