
NFSv4                                                           C. Lever
Internet-Draft                                                    Oracle
Intended status: Informational                           October 6, 2015
Expires: April 8, 2016

          RPC-over-RDMA Version One Implementation Experience
          draft-cel-nfsv4-rfc5666-implementation-experience-00

Abstract

   Experiences and challenges implementing the RPC-over-RDMA Version One
   protocol are described.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 8, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Lever                     Expires April 8, 2016                 [Page 1]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
     1.2.  Purpose Of This Document  . . . . . . . . . . . . . . . .   4
     1.3.  Updating RFC 5666 . . . . . . . . . . . . . . . . . . . .   4
     1.4.  Scope Of This Document  . . . . . . . . . . . . . . . . .   5
   2.  RPC-Over-RDMA Essentials  . . . . . . . . . . . . . . . . . .   5
     2.1.  Arguments And Results . . . . . . . . . . . . . . . . . .   5
     2.2.  Remote Direct Memory Access . . . . . . . . . . . . . . .   6
     2.3.  Upper Layer Binding Specifications  . . . . . . . . . . .   7
     2.4.  Transfer Models . . . . . . . . . . . . . . . . . . . . .   7
     2.5.  On-The-Wire Protocol  . . . . . . . . . . . . . . . . . .   8
       2.5.1.  Inline Operation  . . . . . . . . . . . . . . . . . .   8
       2.5.2.  RDMA Segment  . . . . . . . . . . . . . . . . . . . .  10
       2.5.3.  Read Chunk  . . . . . . . . . . . . . . . . . . . . .  10
       2.5.4.  Write Chunk . . . . . . . . . . . . . . . . . . . . .  11
       2.5.5.  Read List . . . . . . . . . . . . . . . . . . . . . .  12
       2.5.6.  Write List  . . . . . . . . . . . . . . . . . . . . .  12
       2.5.7.  Position Zero Read Chunk  . . . . . . . . . . . . . .  13
       2.5.8.  Reply Chunk . . . . . . . . . . . . . . . . . . . . .  13
   3.  Specification Issues  . . . . . . . . . . . . . . . . . . . .  13
     3.1.  Terminology Clarifications  . . . . . . . . . . . . . . .  13
       3.1.1.  Recommendations . . . . . . . . . . . . . . . . . . .  15
     3.2.  The Position Zero Read Chunk  . . . . . . . . . . . . . .  16
       3.2.1.  Recommendations . . . . . . . . . . . . . . . . . . .  17
     3.3.  RDMA_NOMSG Call Messages  . . . . . . . . . . . . . . . .  18
       3.3.1.  Recommendations . . . . . . . . . . . . . . . . . . .  19
     3.4.  RDMA_MSG Call with Position Zero Read Chunk . . . . . . .  19
       3.4.1.  Recommendations . . . . . . . . . . . . . . . . . . .  19
     3.5.  Padding Inline Content After A Chunk  . . . . . . . . . .  20
       3.5.1.  Recommendations . . . . . . . . . . . . . . . . . . .  21
     3.6.  Write List XDR Roundup  . . . . . . . . . . . . . . . . .  21
       3.6.1.  Recommendations . . . . . . . . . . . . . . . . . . .  23
     3.7.  Write List Error Cases  . . . . . . . . . . . . . . . . .  23
       3.7.1.  Recommendations . . . . . . . . . . . . . . . . . . .  25
   4.  Operational Considerations  . . . . . . . . . . . . . . . . .  26
     4.1.  Computing Request Buffer Requirements . . . . . . . . . .  26
       4.1.1.  Recommendations . . . . . . . . . . . . . . . . . . .  26
     4.2.  Default Inline Buffer Size  . . . . . . . . . . . . . . .  26
       4.2.1.  Recommendations . . . . . . . . . . . . . . . . . . .  27
     4.3.  When To Use Reply Chunks  . . . . . . . . . . . . . . . .  27
       4.3.1.  Recommendations . . . . . . . . . . . . . . . . . . .  28
     4.4.  Computing Credit Values . . . . . . . . . . . . . . . . .  28
       4.4.1.  Recommendations . . . . . . . . . . . . . . . . . . .  28
     4.5.  Race Windows  . . . . . . . . . . . . . . . . . . . . . .  28
       4.5.1.  Recommendations . . . . . . . . . . . . . . . . . . .  29
   5.  Pre-requisites for NFSv4  . . . . . . . . . . . . . . . . . .  29

Lever                     Expires April 8, 2016                 [Page 2]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

     5.1.  Multiple RDMA-eligible Arguments and Results  . . . . . .  29
       5.1.1.  Recommendations . . . . . . . . . . . . . . . . . . .  29
     5.2.  Bi-directional Operation  . . . . . . . . . . . . . . . .  29
       5.2.1.  Recommendations . . . . . . . . . . . . . . . . . . .  30
     5.3.  Missing NFS Binding Specifications  . . . . . . . . . . .  30
   6.  Requirements for Upper Layer Binding Specifications . . . . .  30
     6.1.  Organization Of Binding Specification Requirements  . . .  30
       6.1.1.  Recommendations . . . . . . . . . . . . . . . . . . .  31
     6.2.  RDMA Eligibility  . . . . . . . . . . . . . . . . . . . .  31
       6.2.1.  Recommendations . . . . . . . . . . . . . . . . . . .  31
     6.3.  Binding Specification Completion Assessment . . . . . . .  32
       6.3.1.  Recommendations . . . . . . . . . . . . . . . . . . .  32
   7.  Removal of Unimplemented Protocol Features  . . . . . . . . .  32
     7.1.  Read-Read Transfer Model  . . . . . . . . . . . . . . . .  33
       7.1.1.  Recommendations . . . . . . . . . . . . . . . . . . .  33
     7.2.  RDMA_MSGP . . . . . . . . . . . . . . . . . . . . . . . .  33
       7.2.1.  Recommendations . . . . . . . . . . . . . . . . . . .  33
   8.  Optional Additions To The Protocol  . . . . . . . . . . . . .  33
     8.1.  Support For GSS-API With RPC-Over-RDMA  . . . . . . . . .  33
     8.2.  Remote Invalidation . . . . . . . . . . . . . . . . . . .  34
       8.2.1.  Hardware Support  . . . . . . . . . . . . . . . . . .  34
       8.2.2.  Avoiding Spurious Invalidation  . . . . . . . . . . .  35
       8.2.3.  Invalidating Multiple R_keys  . . . . . . . . . . . .  35
       8.2.4.  Invalidation Races  . . . . . . . . . . . . . . . . .  35
       8.2.5.  Backward Compatibility  . . . . . . . . . . . . . . .  35
       8.2.6.  Conclusion  . . . . . . . . . . . . . . . . . . . . .  35
     8.3.  Work Cancellation . . . . . . . . . . . . . . . . . . . .  36
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  36
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  36
   11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  37
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  37
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  37
     12.2.  Informative References . . . . . . . . . . . . . . . . .  38
   Author’s Address  . . . . . . . . . . . . . . . . . . . . . . . .  38

1.  Introduction

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

Lever                     Expires April 8, 2016                 [Page 3]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

1.2.  Purpose Of This Document

   The usual mechanism to provide feedback on Proposed Standards is an
   implementation experience report.  In this document, the author
   summarizes implementation experience with the RPC-over-RDMA Version
   One protocol [RFC5666], and proposes improvements to the protocol
   specification based on implementer experience and frequently-asked
   questions.

   The key contribution of this document is to highlight areas of RFC
   5666 where independent good faith readings could result in distinct
   implementations that do not interoperate with each other.
   Improvements are proposed that remove ambiguities in the RPC-over-
   RDMA protocol specification.

   Correcting these issues is critical.  Fresh implementations of RPC-
   over-RDMA Version One continue to arise.  Developers of existing
   implementations have discovered specification ambiguities that have
   led to real interoperability failures.

   The author of this I-D has not found significant problems with the
   RPC-over-RDMA Version One protocol itself, when it is implemented as
   the authors of RFC 5666 intended.  Therefore no changes to the
   protocol are needed to address difficulties discovered so far.  A
   Version Two of this protocol is not required at this time, and no XDR
   changes are recommended by this document.

1.3.  Updating RFC 5666

   During IETF 92, several alternatives for updating RFC 5666 were
   discussed with the RFC Editor and with the assembled nfsv4 Working
   Group.  Among them were:

   1.  Filing individual errata for each issue.

   2.  Introducing an new RFC that updates but does not obsolete RFC
       5666, but makes no change to the protocol.

   3.  Introducing an RFC 5666bis that replaces and thus obsoletes RFC
       5666, but makes no change to the protocol.

   4.  Introducing a new RFC that specifies RPC-over-RDMA Version Two.

   An additional possibility, not discussed at IETF 92, would be to
   update RFC 5666 as it transitions from Proposed Standard to Draft
   Standard.  The updates, being numerous, may not be appropriate during
   such a transition window.

Lever                     Expires April 8, 2016                 [Page 4]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   The RFC Editor’s preference was to obsolete RFC 5666 but retain RPC-
   over-RDMA Version One (number 3 above).  This eases the burden on
   implementers, who could then reference a single specification of the
   protocol.  In addition, this alternative extends the life of the
   current implementations in the field, which use RPC-over-RDMA Version
   One effectively.

   Subsequent discussion with the nfsv4 Working Group focused
   particularly on resolving potential interoperability problems.  A
   Version Two of RPC-over-RDMA was left open for a later time.  The
   priority is fixing issues with the current specification.

   This document assumes that, subsequent to affirmation of the
   recommendations described herein, the next step is to create RFC
   5666bis, to which the recommendations in this document can be
   applied.

1.4.  Scope Of This Document

   The scope of this document is narrow.  It recommends codifying
   existing implementation practices, and restricting the use of
   protocol alternatives that might result in interoperability failure.

   This document does not specify a new Internet Protocol nor does it
   propose on-the-wire changes to an existing Internet Protocol.
   Therefore the category of this document is Informational.

2.  RPC-Over-RDMA Essentials

   The following sections summarize the state of affairs defined in RFC
   5666.  This is a distillation of text from RFC 5666, dialog with a
   co-author of RFC 5666, and implementer experience.  The XDR
   definitions are copied from RFC 5666 Section 4.3.

2.1.  Arguments And Results

   Like a local function call, every Remote Procedure Call (RPC)
   operation has a set of one or more "arguments" and a set of one or
   more "results," and the caller is not allowed to proceed until the
   function’s results are available.  The difference is that the called
   function is executed remotely rather than in the local application’s
   context.

   A client endpoint serializes an RPC call’s arguments into a byte
   stream using XDR [RFC1832].  The XDR stream is conveyed to a server
   endpoint via an RPC call message (sometimes referred to as an "RPC
   request").

Lever                     Expires April 8, 2016                 [Page 5]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   The server deserializes the arguments and processes the requested
   operation.  It then serializes the operation’s results into an XDR
   byte stream.  This stream is conveyed back to the client endpoint via
   an RPC reply message.

   The remainder of this document assumes a working knowledge of XDR and
   the RPC protocol [RFC5531].

2.2.  Remote Direct Memory Access

   RPC arguments or results may be very large.  For example, NFS READ
   and WRITE payloads are often 100KB or larger.

   An RPC client system can be made more efficient if large RPC
   arguments and results are transferred by a third party such as
   intelligent network interface hardware.  Remote Direct Memory Access
   (RDMA) enables offloading data movement to avoid the negative
   performance effects of using traditional host-based network
   operations to move bulk data.

   Another benefit of RDMA data transfer is that the host CPUs on both
   transport endpoints are not involved.  Data transfer on both the
   sending and receiving endpoints is zero-touch.

   RFC 5666 describes how to use only the Send, RDMA Read, and RDMA
   Write operations described in [RFC5040] to move whole RPC calls and
   replies between client and server endpoints.

   Because RDMA Read and Write operations work most efficiently with
   large payloads, RPC-over-RDMA Version One moves RPCs with large
   payloads differently than RPCs with small payloads.

   Large Data Transfers:  A local endpoint tags memory areas to be
      involved in data transfers, then advertises the coordinates of
      those areas to a remote endpoint.  The remote endpoint transfers
      data into or out of those areas using RDMA Read and Write
      operations.

      Finally the remote endpoint signals that its work is done, and the
      local endpoint ensures remote access to the memory area is no
      longer allowed.

      This transfer mode is utilized to convey large RPCs and large data
      payloads.

   Small Data Transfers:  A local endpoint transfers data into small
      unadvertised buffers on a remote endpoint using Send operations.
      Each transfer behaves like a reliable datagram send operation.

Lever                     Expires April 8, 2016                 [Page 6]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

      This transfer mode is utilized to convey small RPC operations and
      advertisements of buffer coordinates for large data transfers.
      The latency of Send operations is significantly lower than
      traditional network transfers.

   The remainder of this document assumes an understanding of RDMA and
   its primitives.  See [RFC5040] for details.

2.3.  Upper Layer Binding Specifications

   RFC 5666 provides a generic framework for conveying RPC requests and
   replies on RDMA transports.  By itself this is insufficient to enable
   an RPC program, referred to as an "Upper Layer Protocol" or ULP, to
   operate over an RDMA transport.  Thus RFC 5666 also requires a
   separate specification that describes how each ULP uses RDMA.

   This set of requirements is known as an "Upper Layer Binding"
   specification, or ULB.  An Upper Layer’s ULB lays out which RPC
   arguments and results in the RPC program are eligible to be
   transferred by RDMA Read and Write.  An RPC argument or result that
   is permitted to be transferred via RDMA is referred to as "RDMA-
   eligible."

   A ULB is required for each RPC program and version tuple that is
   interested in operating on an RDMA transport.  A ULB may be part of
   another specification, or it may be a stand-alone document, similar
   to [RFC5667].

2.4.  Transfer Models

   RFC 5666 specifies two transfer models:

   Read-Read:  Server endpoints employ RDMA Read operations to convey
      RPC arguments or whole RPC calls.  Client endpoints employ RDMA
      Read operations to convey RPC results or whole RPC relies.
      Clients expose their memory to the server, and the server exposes
      its memory to clients.

   Read-Write:  Server endpoints employ RDMA Read operations to convey
      RPC arguments or whole RPC calls.  Server endpoints employ RDMA
      Write operations to convey RPC results or whole RPC relies.
      Clients expose their memory to the server, but the server does not
      expose its memory.

   A third model, known as Write-Write, is used by a few other storage
   protocols, but is not considered in RFC 5666.

Lever                     Expires April 8, 2016                 [Page 7]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   For clarity, the following discussion considers only the Read-Write
   transfer model.  No current RPC-over-RDMA Version One implementation
   uses the Read-Read transfer model.

2.5.  On-The-Wire Protocol

2.5.1.  Inline Operation

   Each RPC call or reply message conveyed on an RDMA transport starts
   with an RPC-over-RDMA header.  A client endpoint uses a Send
   operation to convey the RPC-over-RDMA header to a server endpoint.  A
   server endpoint does likewise to convey RPC replies containing this
   header to a client endpoint.  The message contents sent via Send,
   including an RPC-over-RDMA header and possibly an RPC message proper,
   are referred to as "inline content."

   The RPC-over-RDMA header starts with three uint32 fields:

   <CODE BEGINS>

      struct rdma_msg {
              uint32    rdma_xid;     /* Mirrors the RPC header xid */
              uint32    rdma_vers;    /* Version of this protocol */
              uint32    rdma_credit;  /* Buffers requested/granted */
              rdma_body rdma_body;
      };

   <CODE ENDS>

   Following these three fields is a union:

Lever                     Expires April 8, 2016                 [Page 8]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   <CODE BEGINS>

      enum rdma_proc {
              RDMA_MSG=0,   /* An RPC call or reply msg */
              RDMA_NOMSG=1, /* An RPC call or reply msg -
                               separate body */
              . . .
              RDMA_ERROR=4  /* An RPC RDMA encoding error */
      };

      union rdma_body switch (rdma_proc proc) {
              case RDMA_MSG:
                rpc_rdma_header rdma_msg;
              case RDMA_NOMSG:
                rpc_rdma_header_nomsg rdma_nomsg;
              . . .
              case RDMA_ERROR:
                rpc_rdma_error rdma_error;
      };

      struct rpc_rdma_header {
              struct xdr_read_list   *rdma_reads;
              struct xdr_write_list  *rdma_writes;
              struct xdr_write_chunk *rdma_reply;
              /* rpc body follows */
      };

      struct rpc_rdma_header_nomsg {
              struct xdr_read_list   *rdma_reads;
              struct xdr_write_list  *rdma_writes;
              struct xdr_write_chunk *rdma_reply;
      };

   <CODE ENDS>

   In either the RDMA_MSG or RDMA_NOMSG case, the RPC-over-RDMA header
   may advertise memory coordinates to be used for RDMA data transfers
   associated with this RPC.

   The difference between these two cases is whether or not the
   traditional RPC header itself is included in this Send operation
   (RDMA_MSG), or not (RDMA_NOMSG).  In the former case, the RPC header
   follows immediately after the rdma_reply field.  In the latter case,
   the RPC header is transfered via another mechanism (typically a
   separate RDMA Read operation).

   A client may use either type of message to send an RPC call message,
   depending on the requirements of the RPC call message being conveyed.

Lever                     Expires April 8, 2016                 [Page 9]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   A server may use RDMA_NOMSG only when the client provides a Reply
   chunk (see Section 4.3).  A server is free to use RDMA_MSG instead in
   that case, depending on the requirements of the RPC reply message.

2.5.2.  RDMA Segment

   An "RDMA segment", or just "segment", contains the co-ordinates of a
   contiguous memory region that is to be conveyed via an RDMA Read or
   RDMA Write operation.

   A segment is advertised in an RPC-over-RDMA header to enable the
   receiving endpoint to drive subsequent RDMA access of the data in
   that memory region.  The RPC-over-RDMA Version One XDR represents an
   RDMA segment with the xdr_rdma_segment struct:

   <CODE BEGINS>

      struct xdr_rdma_segment {
              uint32 handle;
              uint32 length;
              uint64 offset;
      };

   <CODE ENDS>

   See [RFC5040] for a discussion of what the content of these fields
   means.

2.5.3.  Read Chunk

   One or more "read chunks" are used to advertise the coordinates of an
   RPC argument to be transferred via an RDMA Read operation.  Each read
   chunk is represented by the xdr_read_chunk struct:

   <CODE BEGINS>

      struct xdr_read_chunk {
              uint32 position;
              struct xdr_rdma_segment target;
      };

   <CODE ENDS>

   A read chunk is one RDMA segment with a Position field.  The Position
   field indicates the location in an XDR stream where the argument’s
   data would appear if it were being transferred inline.

Lever                     Expires April 8, 2016                [Page 10]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   A single RPC argument might be contained in one contiguous memory
   region.  That RPC argument can be represented by a single read chunk.

   Alternately, a single RPC argument might reside in multiple
   discontiguous memory regions.  Since the memory regions are not
   contiguous, each region is represented by a single read chunk in a
   list of chunks.  The definition of Position in RFC 5666 Section 3.4
   implies this by saying "all chunks belonging to a single RPC
   argument... will have the same position."

   Thus all read chunks that belong to the same RPC argument have the
   same value in their Position field, and are read in list order into
   memory regions on the server endpoint.  This enables gathering RPC
   argument data from multiple buffers on the client endpoint.

2.5.4.  Write Chunk

   A "Write chunk" conveys an RPC result object using one or more RDMA
   Write operations.

   Each write chunk is an array of RDMA segments.  One RDMA-eligible RPC
   result is always conveyed in a single write chunk.  This is unlike an
   RDMA-eligible RPC argument, which may be conveyed in more than one
   read chunk.

   A write chunk is represented by the xdr_write_chunk struct:

   <CODE BEGINS>

      struct xdr_write_chunk {
              struct xdr_rdma_segment target<>;
      };

   <CODE ENDS>

   These segments are written in array order into memory regions on the
   client endpoint.  This enables scattering an RPC result’s data into
   multiple buffers on the client endpoint.

   A client endpoint provides a write chunk as a receptacle for an RPC
   result.  Typically the exact size of the result cannot be predicted
   before the server has formed the RPC reply.  Thus the client must
   provide enough space in the write chunk for the largest result the
   server might generate for this RPC operation.  The server updates the
   length of the chunk when it returns the Write list to the client via
   a matching RPC reply message.

Lever                     Expires April 8, 2016                [Page 11]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Because the client must pre-allocate the area in which the server
   writes the result before the server has formed the reply, giving a
   position and size to the data, the client cannot know the XDR
   position of the reply object.  Thus write chunks do not have a
   Position field.

2.5.5.  Read List

   Each RPC-over-RDMA Version One call has one "Read list," provided by
   the client endpoint.  This is a list of RDMA segments with Position
   values that make up all the RPC arguments in this RPC request to be
   conveyed via RDMA Read operations.

   A Read list is represented by the xdr_read_list struct:

   <CODE BEGINS>

      struct xdr_read_list {
              struct xdr_read_chunk entry;
              struct xdr_read_list  *next;
      };

   <CODE ENDS>

   The Read list may be empty if the RPC call has no RPC arguments that
   are RDMA-eligible.

2.5.6.  Write List

   Each RPC-over-RDMA Version One call has one "Write list," provided by
   the client endpoint.  This is a list of RDMA segment arrays that will
   catch the RPC results in this RPC request to be conveyed via RDMA
   Write operations.

   A Write list is represented by the xdr_write_list struct:

   <CODE BEGINS>

      struct xdr_write_list {
              struct xdr_write_chunk entry;
              struct xdr_write_list  *next;
      };

   <CODE ENDS>

   Note that this looks similar to a Read list, but because an
   xdr_write_chunk is an array and not an RDMA segment, the two data
   structures are not the same.

Lever                     Expires April 8, 2016                [Page 12]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   The Write list may be empty if there are no RPC results which are
   RDMA-eligible.

2.5.7.  Position Zero Read Chunk

   A client endpoint may use a "Position Zero read chunk" to convey most
   or all of an entire RPC call, rather than including the RPC call
   message inline.  A Position Zero read chunk might be necessary if the
   RPC call message is too large to fit inline.  RFC 5666 Section 5.1
   defines the operation of a "Position Zero read chunk."

   To support gathering a large RPC call message from multiple locations
   on the client, a Position Zero read chunk may be comprised of more
   than one xdr_read_chunk.  Each read chunk that belongs to the
   Position Zero read chunk has the value zero in its Position field.

2.5.8.  Reply Chunk

   Each RPC-over-RDMA Version One call has one "Reply chunk," provided
   by the client endpoint.  A Reply chunk is a write chunk, thus it is
   an array of one or more RDMA segments.  This enables a client
   endpoint to control where the server scatters the parts of the RPC
   reply message.  Typically there is only one segment in a Reply chunk.

   A client endpoint provides the Reply chunk whenever it predicts the
   server’s RPC reply cannot fit inline.  It may choose to provide the
   Reply chunk even when the server can return only a small reply.  A
   server endpoint may use a "Reply chunk" to convey most or all of an
   entire RPC reply, rather than including the RPC reply message inline.

3.  Specification Issues

3.1.  Terminology Clarifications

   Even seasoned NFS/RDMA implementers have had difficulty agreeing on
   precisely what a "chunk" is, and had challenges distinguishing the
   structure of the Read list from structure of the Write list.

   On occasion, the text of RFC 5666 uses the term "chunk" to represent
   either read chunks or write chunks, even though these are different
   data types and have different semantics.

   For example, RFC 5666 Section 3.4 uses the term "chunk list entry"
   even though the discussion is referring to an array element.  It
   implies all chunk types have a Position field, even though only read
   chunks have this field.

   Near the end of Section 3.4, it says:

Lever                     Expires April 8, 2016                [Page 13]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

      Therefore, read chunks are encoded into a read chunk list as a
      single array, with each entry tagged by its (known) size and its
      argument’s or result’s position in the XDR stream.

   The Read list is not an XDR array, it is always an XDR list.  A Write
   chunk is an XDR array.

   RFC 5666 Section 3.7, third paragraph uses the terms "chunked
   element" and "chunk segment."  Neither term is defined or used
   anywhere else.  The fourth paragraph refers to a "sequence of chunks"
   but likely means a sequence of RDMA segments.

   The Read list is typically used for Upper Layer WRITE operations such
   as NFS WRITE, while the Write list is typically used for Upper Layer
   READ operations such as NFS READ.  If the Read-Read transfer model is
   removed from RFC 5666bis, it would be less confusing to readers of
   Upper Layer Binding specifications to call the Read list the Argument
   list, and call the Write list the Result list.

   The XDR definition for a read chunk is an RDMA segment with a
   position field.  It is implied in RFC 5666 Section 3.4 that multiple
   xdr_read_chunk objects can make up a single RPC argument object if
   they share the same Position in the XDR stream.  Some implementations
   depend on using multiple RDMA segments in the same XDR Position,
   particularly for sending Position Zero read chunks efficiently by
   gathering an RPC call message from multiple discontiguous memory
   locations.  Other implementations do not support sending or receiving
   multiple Read chunks with the same Position.

   The XDR definition for a write chunk is an array of segments.  One
   xdr_write_chunk represents one RPC result object.  An RPC argument is
   represented by one or more read chunks, but an RPC result is always
   represented by a single write chunk.

   Not having a firm one-to-one correspondence between read chunks and
   RPC arguments is sometimes awkward.  The two chunk types should be
   more symmetrical to avoid confusion, although that might be difficult
   to pull off without altering the RPC-over-RDMA Version One XDR
   definition.  As we will see later, the XDR roundup rules also appear
   to apply asymmetrically to read chunks and write chunks.

   The Write list is especially confusing because it is a list of arrays
   of RDMA segments, rather than a simple list of RDMA segments.  What
   is referred to as a Read list entry means on xdr_read_chunk, or a
   segment.  That segment can be a portion of or a whole RPC argument.
   A Write list entry is an array, and is always a whole RPC result.

Lever                     Expires April 8, 2016                [Page 14]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Implementers have been aided by the ASCII art block comments in the
   Linux kernel in net/sunrpc/xprtrdma/rpcrdma.c, excerpted here.  This
   diagram shows exactly how the Read list and Write list are
   constructed in an XDR stream.

   <CODE BEGINS>

     /*
      * Encoding key for single-list chunks
      *         (HLOO = Handle32 Length32 Offset64):
      *
      *  Read chunklist (a linked list):
      *   N elements, position P (same P for all chunks of same arg!):
      *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
      *
      *  Write chunklist (a list of (one) counted array):
      *   N elements:
      *    1 - N - HLOO - HLOO - ... - HLOO - 0
      *
      *  Reply chunk (a counted array):
      *   N elements:
      *    1 - N - HLOO - HLOO - ... - HLOO
      */

   <CODE ENDS>

3.1.1.  Recommendations

   To aid in understanding, RFC 5666bis should include a glossary that
   explains and distinguishes the various components in the protocol.
   Upper Layer Binding specifications may also refer to these terms.
   RFC 5666bis should utilize and capitalize these glossary terms
   consistently.

   Introduce in RFC 5666bis additional diagrams that supplement the XDR
   definition in RFC 5666 Section 4.3.  RFC 5666bis should explain the
   structure of the XDR and how it is used; in particular how multiple
   read chunks can make up a single RPC argument.  The discussion should
   take care to use the term "segment" instead of the term "chunk" where
   necessary.  RFC 5666bis should contain an explicit rationalization
   for the structural differences between the Read list and the Write
   list.

   The XDR structure names should avoid using the terms header and body,
   which already have specific meanings in the context of RPC.  RFC
   5666bis should define a single structure that contains the Read list,
   Write list, and Reply chunk, since the only difference between
   rpc_rdma_header and rpc_rdma_header_nomsg is a code comment.

Lever                     Expires April 8, 2016                [Page 15]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   XDR definitions should be enclosed in CODE BEGINS and CODE ENDS
   delimiters.  An appropriate copyright block should accompany the XDR
   definitions in RFC 5666bis.

3.2.  The Position Zero Read Chunk

   RFC 5666 Section 5.1 defines the operation of a Position Zero read
   chunk.  A client uses a Position Zero read chunk in place of inline
   content when the size of an RPC call exceeds the size of the server
   endpoint’s receive buffers.  The client endpoint conveys the co-
   ordinates of the Position Zero read chunk with a Send operation, then
   the server endpoint uses a RDMA Read operation to pull the RPC call
   message.

   RFC 5666 Section 3.4 says:

      Semantically speaking, the protocol has no restriction regarding
      data types that may or may not be represented by a read or write
      chunk.  In practice however, efficiency considerations lead to the
      conclusion that certain data types are not generally "chunkable".
      Typically, only those opaque and aggregate data types that may
      attain substantial size are considered to be eligible.  With
      today’s hardware, this size may be a kilobyte or more.  However,
      any object MAY be chosen for chunking in any given message.

      The eligibility of XDR data items to be candidates for being moved
      as data chunks (as opposed to being marshaled inline) is not
      specified by the RPC-over-RDMA protocol.  Chunk eligibility
      criteria MUST be determined by each upper-layer in order to
      provide for an interoperable specification.

   The intention of this text is to spell out that RDMA eligibility
   applies only to individual arguments and results, and RDMA
   eligibility criteria is determined by a separate specification, and
   not in RFC 5666.

   The Position Zero read chunk is an exception to both of these
   guidelines.  The Position Zero read chunk, by virtue of the fact that
   it typically conveys an entire RPC call message, may contain multiple
   arguments, independent of whether any particular argument in the RPC
   call is RDMA-eligible.

   Unlike the read chunks described in the RFC 5666 excerpt above, the
   content of a Position Zero read chunk is typically marshaled and
   copied on both ends of the transport, negating the benefit of RDMA
   data transfer.  The Position Zero read chunk is notably not for the
   purpose of conveying performance critical Upper Layer operations.

Lever                     Expires April 8, 2016                [Page 16]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Thus the requirements for what may or may not appear in a Position
   Zero read chunk are indeed specified by RFC 5666, in contradiction to
   the second paragraph quoted above.  Upper Layer Binding
   specifications may have something to say about what may appear in a
   Position Zero read chunk, but the basic definition of Position Zero
   should be made clear in RFC 5666bis as distinct from a read chunk
   whose Position field is non-zero.

   Because a read chunk is defined as one RDMA segment with a Position
   field, at least one implementation allows only a single chunk segment
   in Position zero read chunks.  This is a problem for two reasons:

   o  Some RPCs are constructed in multiple non-contiguous buffers.
      Allowing only one chunk segment in Position Zero would mean a
      single large contiguous buffer would be have to be allocated and
      registered, and then the components of the XDR stream would have
      to be copied into that buffer.

   o  Some client endpoints might not be able to register memory regions
      larger than the platform’s physical page size.  Allowing only one
      chunk segment in Position Zero would limit the maximum size of
      RPC-over-RDMA messages to a single page.  Allowing multiple
      segments means the message size can be as large as the maximum
      number of read chunks that can be sent in an RPC-over-RDMA header.

   RFC 5666 does not limit the number of RDMA segments in a read chunk,
   nor does it limit the number of chunks that can appear in the Read
   list.  The Position Zero read chunk, despite its name, is not limited
   to a single xdr_read_chunk.

3.2.1.  Recommendations

   State in RFC 5666bis that the guidelines in RFC 5666 Section 3.4
   apply only to RDMA_MSG type calls.  When the Position Zero read chunk
   is introduced in RFC 5666 Section 5.1, enumerate the differences
   between it and the read chunks previously described in RFC 5666
   Section 3.4.

   RPC 5666bis should note explicitly that read chunks, including the
   Position Zero read chunk, can be made up of multiple RDMA segments.
   If the Position Zero read chunk was never intended to be made up of
   multiple RDMA segments, then RFC 5666bis should explain how to convey
   large RPC messages using a Position Zero read chunk plus one or more
   read chunks in non-zero positions.

   RFC 5666bis should make it clear what restrictions an Upper Layer
   Binding may make on Position Zero read chunks.

Lever                     Expires April 8, 2016                [Page 17]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

3.3.  RDMA_NOMSG Call Messages

   The second paragraph of RFC 5667 Section 4 says, in reference to
   NFSv2 and NFSv3 WRITE and SYMLINK operations:

      . . . a single RDMA Read list entry MAY be posted by the client to
      supply the opaque file data for a WRITE request or the pathname
      for a SYMLINK request.  The server MUST ignore any Read list for
      other NFS procedures, as well as additional Read list entries
      beyond the first in the list.

   However, large non-write NFS operations are conveyed via a Read list
   containing at least a Position Zero read chunk.  Strictly speaking,
   the above requirement means large non-write NFS operations may never
   be conveyed because the server MUST ignore the read chunk in such
   requests.

   It is likely the authors of RFC 5667 intended this limit to apply
   only to RDMA_MSG type calls.  If that is true, however, an NFS
   implementation could legally skirt the stated restriction simply by
   using an RDMA_NOMSG type call that conveys both a Position Zero and a
   non-zero position read chunk to send a non-write NFS operation.

   Unless either RFC 5666 or the protocol’s Upper Layer Binding
   explicitly prohibits it, allowing a chunk in a non-zero Position in
   an RDMA_NOMSG type call means an Upper Layer Protocol may ignore
   Binding requirements like the above.

   Typically there is no benefit to allowing multiple read chunks for
   RDMA_NOMSG type calls.  Any non-zero Position read chunk segments can
   always be conveyed in the Position Zero read chunk.

   However, there is a class of RPC operations where RDMA_NOMSG with
   multiple read chunks is useful: when the body of an RPC call message
   is larger than the inline buffer size, even after bulk payload has
   been moved to read chunks.

   A similar discussion applies to RDMA_NOMSG replies with large reply
   bodies and RDMA-eligible results.  Such replies would use both the
   Write list and the Reply chunk simultaneously.  However, write chunks
   do not have Position fields.  It remains to be seen whether this is
   enough to enable clients to re-assemble generic RPC replies
   correctly.

Lever                     Expires April 8, 2016                [Page 18]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

3.3.1.  Recommendations

   RFC 5666bis should continue to allow RDMA_NOMSG type calls with
   additional read chunks.  The rules about RDMA-eligibility in RFC
   5666bis should discuss when the use of this construction is
   beneficial, and when it should be avoided.

   Authors of Upper Layer Bindings should be warned about ignoring these
   cases.  RPC 5666bis should provide a default behavior that applies
   when Upper Layer Bindings omit this discussion.

3.4.  RDMA_MSG Call with Position Zero Read Chunk

   An RPC header starts at XDR stream offset zero.  The first item in
   the header of both RPC calls and RPC replies is the XID field
   [RFC5531].  RFC 5666 Section 4.1 says:

      A header of message type RDMA_MSG or RDMA_MSGP MUST be followed by
      the RPC call or RPC reply message body, beginning with the XID.

   This is a strong implication that inline content in an RDMA_MSG type
   message starts at XDR stream offset zero.

   An RDMA_MSG type call message has inline content and zero or more
   read chunks.  Recall the definition of a read chunk as a list of read
   chunk segments whose Position field contains the same value.  The
   value of the Position field determines where the read chunk appears
   in the XDR stream that comprises an RPC call message.

   A Position Zero read chunk, therefore, starts at XDR stream offset
   zero, just like inline content does.  In an RDMA_NOMSG type call
   message, which has no inline content, a Position Zero read chunk acts
   as inline content.

   There is no prohibition in RFC 5666 against an RDMA_MSG type call
   messsage with a Position Zero read chunk.  However, it’s not clear
   how a server should interpret such a message.  RFC 5666 requires
   inline content to start at XDR stream offset zero, but there is a
   Position Zero read chunk, which also starts at XDR stream offset
   zero.

3.4.1.  Recommendations

   RPC 5666bis should clearly define what is meant by an XDR stream.
   RFC 5666bis should define that XDR stream Position is measured
   relative to the start of the RPC header, which is the first byte of
   the header’s XID field.

Lever                     Expires April 8, 2016                [Page 19]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   The diagrams in RFC 5666 Section 3.8 which number chunks starting
   with 1 are confusing and should be revised.  Numbering chunks this
   way is not natural to the way read chunks and write chunks work.

   RFC 5666bis should prohibit clients from providing a Position Zero
   read chunk in RDMA_MSG type calls.  Likewise, RFC 5666bis should
   prohibit servers from utilizing a Reply chunk in RDMA_MSG type
   replies.

3.5.  Padding Inline Content After A Chunk

   An RPC-over-RDMA read chunk conveys a large RPC argument via one or
   more RDMA transfers.  For instance, the data payload of an NFS WRITE
   operation may be be transferred using a read chunk [RFC5667].

   NFSv3 WRITE operations place the data payload at the end of an RPC
   call message [RFC1813].  The RPC call’s XDR stream starts in an
   inline buffer, continues in the read chunk, then ends there.

   An NFSv4 WRITE operation may occur as a middle operation in an NFSv4
   COMPOUND [RFC5661].  The read chunk containing the data payload
   argument of the WRITE operation might finish before the RPC call’s
   XDR stream does.  In this case, the RPC call’s XDR stream starts in
   an inline buffer, continues in a read chunk, then finishes back in
   the inline buffer.

   This read chunk may have a length that is not evenly divisible by
   four.  RFC 5666 Section 3.7 describes how to manage XDR roundup in a
   read chunk.  The sender is not required to send the extra pad bytes
   at the end of a chunk because a) the receiver never references their
   content, therefore it is wasteful to transmit them, and b) each read
   chunk has a Position field and length that determines exactly where
   that chunk starts and ends in the XDR stream.

   A question arises, however, when considering where the next argument
   after a read chunk should appear.  XDR requires each argument in an
   RPC call to begin on 4-byte alignment [RFC4506].  But a read chunk’s
   XDR padding is optional (see above).  The next read chunk’s position
   field determines where it is placed in the XDR stream.  However
   inline content following a read chunk does not have a Position field
   to guide the receiver in the reassembly of the RPC call message.

   Paragraph 4 of RFC 5666 Section 3.7 says:

      When roundup is present at the end of a sequence of chunks, the
      length of the sequence will terminate it at a non-4-byte XDR
      position.  When the receiver proceeds to decode the remaining part
      of the XDR stream, it inspects the XDR position indicated by the

Lever                     Expires April 8, 2016                [Page 20]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

      next chunk.  Because this position will not match (else roundup
      would not have occurred), the receiver decoding will fall back to
      inspecting the remaining inline portion.  If in turn, no data
      remains to be decoded from the inline portion, then the receiver
      MUST conclude that roundup is present, and therefore it advances
      the XDR decode position to that indicated by the next chunk (if
      any).  In this way, roundup is passed without ever actually
      transferring additional XDR bytes.

   This paragraph adequately describes XDR padding requirements when a
   read chunk is followed by another read chunk.  But it leaves open any
   requirements for XDR padding and alignment when a read chunk is
   followed in the XDR stream by more inline content.

   The correct answer is that following a read chunk of an odd length,
   if the next argument in the XDR stream is in the inline buffer, it
   must begin on a 4-byte boundary in that buffer, even when XDR padding
   is not included in the preceding read chunk.  This is because the
   object that follows a read chunk must always start on an XDR
   alignment boundary.

   Furthermore, the XDR pad for the preceding read chunk cannot appear
   in the inline content, even if it was also not included in the chunk
   itself.  This is because the RPC argument that preceded the read
   chunk will have been padded to 4-byte alignment.  The next position
   in the inline buffer will already be on a 4-byte boundary.

3.5.1.  Recommendations

   State the above requirement in RFC 5666bis in its equivalent of RFC
   5666 Section 3.7.  When a server endpoint forms a reply, the same
   restriction applies to inline content interleaved with write chunks.

   A good generic rule is that all RPC objects in every call or reply
   message must start on an XDR alignment boundary.  This has
   implications for the values allowed in read chunk Position fields,
   for how XDR roundup works for chunks, and for how RPC objects are
   placed in inline buffers.  XDR alignment in inline buffers is always
   relative to Position Zero (or, where the RPC header starts).

3.6.  Write List XDR Roundup

   The final paragraph of RFC 5666 Section 3.7 says this:

      For RDMA Write Chunks, a simpler encoding method applies.  Again,
      roundup bytes are not transferred, instead the chunk length sent
      to the receiver in the reply is simply increased to include any
      roundup.

Lever                     Expires April 8, 2016                [Page 21]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   A server should never write XDR pad bytes, as the client’s upper
   layers will simply ignore them.  However, for the chunk length to be
   rounded up as described, the client must provide adequate extra space
   in the chunk for the XDR pad.  A client can provide space for the XDR
   pad using one of two approaches:

   1.  It can extend the last segment in the chunk.

   2.  It can provide another segment after the segments that receive
       RDMA Write payloads.

   Case 1 is adequate when there is no danger that the server’s RDMA
   Write operations will overwrite existing data on the client in
   buffers following the advertised receive buffers.

   In zero-copy scenarios, an extra segment must be provided separately
   to avoid overwriting existing data (case 2).  In cases where live
   data follows the area where the server writes the data payload, an
   extra registration is needed for just a handful of bytes of no value.

   Registering the extra buffer is a needless cost.  It would be more
   efficient if the XDR pad at the end of a write chunk were treated the
   same as it is for read chunks.  Because every RPC result object must
   begin on an XDR alignment boundary, the object following the write
   chunk in the reply’s XDR stream must begin on an XDR alignment
   boundary.  There should be no need for a XDR pad to be present for
   the receiver to re-assemble the RPC reply’s XDR stream correctly.

   Unfortunately at least one server implementation relies on the
   existence of that extra buffer, even though it does not write to it.
   Another server implementation does not rely on it (operation proceeds
   if it is missing) but when it is present, this server does write
   zeroes to it.

   Therefore the extra buffer for a write chunk’s XDR pad, either as a
   separate segment, or as an extension of the segment that represents
   the data payload buffer, must remain.

   Note that because the Reply chunk is a write chunk, these roundup
   rules apply to it as well.  However, a client typically provides a
   single contiguous buffer for whole replies, which consist of XDR
   encoded content.  A separate tail buffer to catch an XDR pad is
   unlikely to be needed.

Lever                     Expires April 8, 2016                [Page 22]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

3.6.1.  Recommendations

   RFC 5666bis should provide a discussion of the requirements around
   write chunk roundup, with examples.  Explicit RFC2119-style
   interoperability requirements should be provided in the text.  The
   discussion should be separate from the discussion of read chunk
   roundup.

3.7.  Write List Error Cases

   RFC 5666 Section 3.6 says:

      When a write chunk list is provided for the results of the RPC
      call, the RPC server MUST provide any corresponding data via RDMA
      Write to the memory referenced in the chunk list entries.

   This requires the server to use the Write list when it is provided.
   Another way to say it is a server is not permitted to return bulk
   data inline or in the reply chunk when the client has provided a
   Write list.

   This requirement is less clear when it comes to situations where a
   particular RPC reply is allowed to use a provided Write list, but
   does not have a bulk data payload to return.  For example, RFC 5667
   Section 4 permits clients to provide a Write list for NFS READ
   operations.  However, NFSv3 READ operations have a union reply
   [RFC1813]:

Lever                     Expires April 8, 2016                [Page 23]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   <CODE BEGINS>

      struct READ3resok {
              post_op_attr file_attributes;
              count3       count;
              bool         eof;
              opaque       data<>;
      };

      struct READ3resfail {
              post_op_attr file_attributes;
      };

      union READ3res switch (nfsstat3 status) {
      case NFS3_OK:
              READ3resok resok;
      default:
              READ3resfail resfail;
      };

   <CODE ENDS>

   The arm of the READ3res union which is used when a read error occurs
   does not have a bulk data argument.  When an NFS READ operation
   fails, no data is returned.

   RFC 5666 does not prescribe how a server should behave when the
   result object for which the Write list is provided does not appear in
   the reply.  RFC 5666 Section 3.4 says:

      Individual write chunk list elements MAY thereby result in being
      partially or fully filled, or in fact not being filled at all.
      Unused write chunks, or unused bytes in write chunk buffer lists,
      are not returned as results, and their memory is returned to the
      upper layer as part of RPC completion.

   It also says:

      The RPC reply conveys this by returning the write chunk list to
      the client with the lengths rewritten to match the actual
      transfer.

   The disposition of the advertised write buffers is therefore clear.

   The requirements for how the Write list must appear in an RPC reply
   are somewhat less than clear.  Here we are concerned with two cases:

Lever                     Expires April 8, 2016                [Page 24]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   o  When a result consumes fewer RDMA segments than the client
      provided in the Write chunk for that result, what values are
      provided for the chunk’s segment count, and the lengths of the
      unused segments

   o  When a result is not used (say, the reply uses the arm of an XDR
      union that does not contain the result corresponding to a Write
      chunk provided for that result), what values are provided for the
      chunk’s segment count, and the lengths of the unused segments

   The language above suggests the proper value for the Write chunk’s
   segment count is always the same value that the client sent, even
   when the chunk is not used in the reply.  The proper value for the
   length of an unused segment in a Write chunk is always zero.

   Inspection of one existing server implementation shows that when an
   NFS READ operation fails, the returned Write list contains one entry:
   a chunk array containing zero elements.  Another server
   implementation returns the original Write list chunk in this case.

   In either case, clients appear to ignore the Write list when no bulk
   data payload is expected.  Thus it appears that servers may put
   whatever they like in the Write list as long as the list has the same
   number of entries as was provided in the matching RPC call.

   In the future, RPC-over-RDMA Version One will have to handle RPC
   replies where multiple Write list entries are available but the
   server has a choice about which result objects to return as bulk
   reply data.  The arguments and results of an NFSv4 COMPOUND are a
   switched union, and some of the operations in a compound (such as
   READ, whose data payload reply is RDMA-eligible) also use a switched
   union.

   For example, combining several READ operations in an NFSv4 COMPOUND
   might be problematic (if it weren’t for the requirement that the
   entire compound should fail if just one operation in the compound
   fails).

3.7.1.  Recommendations

   RFC 5666bis should explicitly discuss server behavior when an RPC
   reply does not need to use a provided Write list entry.  This is
   generic behavior, independent of any Upper Layer Binding.  The
   explanation can be partially or wholly copied from RFC 5667
   Section 5’s discussion of NFSv4 COMPOUND.

   A number of places in RFC 5666 Section 3.6 hint at how a server
   behaves when it is to return less data than there are chunk segments.

Lever                     Expires April 8, 2016                [Page 25]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   RFC 5666bis should state specific requirements about how a server
   should form the Write list in RPC replies, or it should explicitly
   require clients to ignore the Write list in these cases.  One or more
   explicit examples should be provided in RFC 5666bis.

   RFC 5666bis should provide clear instructions on how Upper Layer
   Bindings are to be written to take care of switched unions.

4.  Operational Considerations

4.1.  Computing Request Buffer Requirements

   The size maximum of a single Send operation includes both the RPC-
   over-RDMA header and the RPC header.  Combined, those two headers
   must not exceed the size of one receive buffer.

   Senders often construct the RPC-over-RDMA header and the RPC call or
   reply message in separate buffers, then combine them via an iovec
   into a single Send.  This does not mean each element of that iovec
   can be as large as the inline threshold.

   An HCA or RNIC may have a small limit on the size of a registered
   memory region.  In that case, each argument or result may be
   comprised of many chunk segments.

   This has implications for the size of the Read and Write lists, which
   take up a variable amount of space in the RPC-over-RDMA header.  The
   sum of the size of the RPC-over-RDMA header, including the Read and
   Write lists, and the size of the RPC header must not exceed the
   inline threshold.  This limits the maximum Upper Layer payload size.

4.1.1.  Recommendations

   RFC 5666bis should provide implementation guidance on how the inline
   threshold (the maximum send size) is computed.

4.2.  Default Inline Buffer Size

   Section 6 of RFC 5666 specifies an out-of-band protocol that allows
   an endpoint to discover a peer endpoint’s receive buffer size, to
   avoid overrunning the receiving buffer, causing a connection loss.

   Not all RPC-over-RDMA Version One implementations also implement CCP,
   as it is optional.  Given the importance of knowing the receiving
   end’s receive buffer size, there should be some way that a sender can
   choose a size that is guaranteed to work with no CCP interaction.

Lever                     Expires April 8, 2016                [Page 26]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   RFC 5666 Section 6.1 describes a 1KB receive buffer limit for the
   first operation on a connection with an unfamiliar server.  In the
   absence of CCP, the client cannot discover that server’s true limit
   without risking the loss of the transport connection.

4.2.1.  Recommendations

   RFC 5666bis should specify a fixed send/receive buffer size as part
   of the RPC-over-RDMA Version One protocol, to use when CCP is not
   available.  For example, the following could be added to the RFC
   5666bis equivalent of RFC 5666 Section 6.1: "In the absence of CCP,
   client and server endpoints MUST assume 1KB receive buffers for all
   Send operations."

   It should be safe for Upper Layer Binding specifications to provide a
   different default inline threshold.  Care must be taken when an
   endpoint is associated with multiple RPC programs that have different
   default thresholds.

4.3.  When To Use Reply Chunks

   RFC 5666 Section 3.6 says:

      When a write chunk list is provided for the results of the RPC
      call, the RPC server MUST provide any corresponding data via RDMA
      Write to the memory referenced in the chunk list entries.

   The Reply chunk is a write chunk (a degenerate write chunk list).  It
   is not clear whether the authors intended this requirement to apply
   to the Reply chunk.  Some server implementations regard the Reply
   chunk as optional.

   Clients may always provide a Reply chunk, at the cost of registering
   memory the server may choose not to use.  Or a client may choose not
   to provide a Reply chunk when it believes there is no possibility the
   server will overrun the client’s receive buffer when returning the
   RPC reply.

   A server may always use a provided Reply chunk, even when it is more
   efficient to convey an RPC reply inline (for instance, if an RPC
   reply is very small).  Or a server may choose to ignore the provided
   Reply chunk when it believes there is no possibility the RPC reply
   can overrun the client’s receive buffer.

   The choice of when to provide or utilize a reply chunk depends on
   whether the sender believes the RPC message will fit entirely within
   the inline buffer.

Lever                     Expires April 8, 2016                [Page 27]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Section 3.6 of RFC 5667 says a server MUST use a Write list provided
   by a client.  RFC 5666bis might prescribe that if the client provides
   a Reply chunk, the server MUST use it, as the client is telling the
   server that it believes the expected RPC reply may not fit in its
   receive buffer.  That way the server cannot overrun client’s receive
   buffer by choosing to Send an intermediate-sized inline request
   instead of using a supplied reply chunk.

   Without CCP, however, both sides are guessing the other’s inline
   threshold.  To maintain 100% interoperability, a client endpoint must
   always provide a Reply chunk, and a server endpoint must always use
   it.  However, this requirement can be very inefficient.  A middle
   ground must be reached.

4.3.1.  Recommendations

   To provide a stronger guarantee of interoperation while ensuring
   efficient operation, RFC 5666bis should explicitly specify when a
   client must offer a Reply chunk, and when a server must use an
   offered Reply chunk.

4.4.  Computing Credit Values

   The third paragraph of Section 3.3 of RFC 5666 leaves open the exact
   mechanism of how often the requested and granted credit limits are
   supposed to be adjusted.  A reader might believe that these values
   are adjusted whenever an RPC call or reply is received, to reflect
   the number of posted receive buffers on each side.

   Although adjustments are allowed by RFC 5666 due to changing
   availability of resources on either endpoint, current implementations
   use a fixed value.  Advertised credit values are always the sum of
   the in-process receive buffers and the ready-to-use receive buffers.

4.4.1.  Recommendations

   RFC 5666bis should clarify the method used to calculate these values.
   RFC 5666bis might also discuss how flow control is impacted when a
   server endpoint utilizes a shared receive queue.

4.5.  Race Windows

   The second paragraph of RFC 5666 Section 3.3 says:

      Additionally, for protocol correctness, the RPC server must always
      be able to reply to client requests, whether or not new buffers
      have been posted to accept future receives.

Lever                     Expires April 8, 2016                [Page 28]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   It is true that the RPC server must always be able to reply, and that
   therefore the client must provide an adequate number of receive
   buffers.  The dependent clause "whether or not new buffers have been
   posted to accept future receives" is problematic, however.

   It’s not clear whether this clause refers to a server leaving even a
   small window where the sum of posted and in-process receive buffers
   is less than the credit limit; or refers to a client leaving a window
   where the sum of posted and in-process receive buffers is less than
   its advertised credit limit.  In either case, such a window could
   result in lost messages or be catastrophic for the transport
   connection.

4.5.1.  Recommendations

   Clarify or remove the dependent clause in the section in RFC 5666bis
   that is equivalent to RFC 5666 Section 3.3.

5.  Pre-requisites for NFSv4

5.1.  Multiple RDMA-eligible Arguments and Results

   One NFSv4 COMPOUND may include more than one NFSv4 operation that
   conveys RDMA-eligible arguments or replies.  There may be additional
   considerations when marshaling or decoding such compounds on RPC-
   over-RDMA Version One transports.

5.1.1.  Recommendations

   Additional review of RFC 5666 and prototyping may be needed to
   understand if additional protocol requirements are necessary when
   multiple read chunks (Read list containing chunks with more than one
   Position value) or multiple write chunks (Write list containing
   multiple chunk arrays) are present.

   More discussion and thought needs to go into handling an NFSv4
   COMPOUND reply conveying more than one bulk data result object.  When
   operation results are defined as XDR unions, it can be ambiguous
   which bulk data result object belongs to which Write list entry.

5.2.  Bi-directional Operation

   NFSv4.1 moves the backchannel onto the same transport as forward
   requests [RFC5661].  Typically RPC client endpoints do not expect to
   receive RPC call messages.  To support NFSv4.1 callback operations,
   client and server implementations must be updated to support bi-
   directional operation.

Lever                     Expires April 8, 2016                [Page 29]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Because of RDMA’s unique requirements to pre-post receive resources,
   special considerations are needed for bi-directional operation.
   Conventions have been provided to allow bi-direction, with a limit on
   backchannel message size, such that no changes to the RPC-over-RDMA
   Version One protocol are needed [I-D.ietf-nfsv4-rpcrdma-bidirection].

5.2.1.  Recommendations

   RFC 5666bis should reference or include an informational
   specification of backwards-direction RPC requests.

5.3.  Missing NFS Binding Specifications

   To fully support minor versions of NFSv4 on RDMA transports, RFC 5666
   requires an Upper Layer Binding Specification for the following
   cases.  This work is out of scope for RFC 5666bis.

   o  NFS ancillary protocols that are not specified in a published IETF
      standard, but that are typically conveyed on the same transport as
      NFS (e.g.  NFSACL)

   o  NFS ancillary protocols that are not specified in a published IETF
      standard, but that can benefit from the low latency operation of
      RDMA transports (e.g.  NLM)

   o  NFSv4 minor versions one and newer

   o  Existing and new pNFS layouts

   o  NFS protocol extensions that do not increment the minor version

6.  Requirements for Upper Layer Binding Specifications

   RFC 5666 requires a Binding specification for any RPC program wanting
   to use RPC-over-RDMA.  The requirement appears in two separate
   places: The fourth paragraph of Section 3.4, and the final paragraph
   of Section 3.6.  As critical as it is to have a Binding
   specification, RFC 5666’s text regarding these specifications is
   sparse and not easy to find.

6.1.  Organization Of Binding Specification Requirements

   Throughout RPC 5666, various Binding requirements appear, such as:

      The mapping of write chunk list entries to procedure arguments
      MUST be determined for each protocol.

   A similar specific requirement for read list entries is missing.

Lever                     Expires April 8, 2016                [Page 30]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   Usually these statements are followed by a reference to the NFS
   Binding specification [RFC5667].  There is no summary of these
   requirements, however.

   Additional advice appears in the middle of Section 3.4:

      It is NOT RECOMMENDED that upper-layer RPC client protocol
      specifications omit write chunk lists for eligible replies,

   This requirement, being in the middle of a dense paragraph about how
   write lists are formed, is easy for an author of Upper Layer Binding
   specifications to miss.

6.1.1.  Recommendations

   RFC 5666bis should specify explicit generic requirements for what
   goes in an Upper Layer Binding specification in one separate section.
   In particular, move the third, fourth and fifth paragraph of RFC 5666
   Section 3.4 to this new section discussing Binding specification
   requirements.

6.2.  RDMA Eligibility

   The third paragraph of Section 3.4 states that any object MAY be
   chosen for chunking (RDMA eligibility) in any given message.  That
   paragraph also states:

      Typically, only those opaque and aggregate data types that may
      attain substantial size are considered to be eligible.

   Further advice about RDMA eligibility does not appear.  However it is
   safe to say that object size is not the only consideration for RDMA
   eligibility.

   For instance, an NFS READDIR result can be large, but typically a
   server copies this result piecemeal into place, encoding each
   section; and the receiving client must perform the converse actions.
   Though there is potentially a large amount of data, the benefit of an
   RDMA transfer is lost because of the need for both host CPUs to be
   involved in marshaling and decoding.

6.2.1.  Recommendations

   RFC 5666bis should define what an Upper Layer Binding is, and how it
   may be specified.

   RFC 5666bis should explicitly specify that an Upper Layer Binding is
   required for every RPC program interested in operating on RDMA

Lever                     Expires April 8, 2016                [Page 31]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   transports.  Separate bindings may be required for different versions
   of that program.

   RFC 5666bis should provide generic guidance about what makes a
   procedure argument or result eligible for RDMA transfer.

   RFC 5666bis should state that the eligibility of any object not
   mentioned explicitly in an ULB is "not eligible."  The exception is
   that Position Zero read chunks and Reply chunks may contain any and
   all argument and result objects regardless of their RDMA eligibility.

   RFC 5666bis should remind authors of Upper Layer Bindings that the
   Reply chunk and Position Zero read chunks are expressly not for
   performance-critical Upper Layer operations.

6.3.  Binding Specification Completion Assessment

   RFC 5666 Section 3.4 states:

      Typically, only those opaque and aggregate data types that may
      attain substantial size are considered to be eligible.  However,
      any object MAY be chosen for chunking in any given message.

      Chunk eligibility criteria MUST be determined by each upper-layer
      in order to provide for an interoperable specification.

   An Upper Layer Binding specification should consider each data type
   in the Upper Layer’s XDR definition, in particular compound types
   such as arrays and lists, when restricting what arguments and results
   are eligible for RDMA transfer.

   In addition, there are requirements related to using NFS with RPC-
   over-RDMA in [RFC5667], and there are some in [RFC5661].  It could be
   helpful to have guidance about what kind of requirements belong in an
   Upper Layer Binding specification versus what belong in the Upper
   Layer Protocol specification.

6.3.1.  Recommendations

   RFC 5666bis should describe what makes a Binding specification
   complete (i.e. read for publication).

7.  Removal of Unimplemented Protocol Features

Lever                     Expires April 8, 2016                [Page 32]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

7.1.  Read-Read Transfer Model

   All existing RPC-over-RDMA Version One implementations use a Read-
   Write data transfer model.  The server endpoint is responsible for
   initiating all RDMA data transfers.  The Read-Read transfer model has
   been deprecated, but because it appears in RFC 5666, implementations
   are still responsible for supporting it.  By removing the
   specification and discussion of Read-Read, the protocol and
   specification can be made simpler and more clear.

7.1.1.  Recommendations

   Remove Read-Read from RFC 5666bis, in particular from its equivalent
   of RFC 5666 Section 3.8.  Reserve RDMA_DONE and make it unused.

7.2.  RDMA_MSGP

   RDMA_MSGP is typically difficult to implement in clients, and the
   author has found none that do.  Servers are required to accept
   RDMA_MSGP, though most do not take advantage of it.

   Also, notably, without CCP, there is no way for peers to discover a
   server endpoint’s preferred alignment parameters, unless the
   implementation provides an administrative interface for specifying a
   remote’s alignment parameters.  RDMA_MSGP is useless without that a
   priori knowledge.

7.2.1.  Recommendations

   RFC 5666bis should allow implementations that choose not to implement
   CCP to not implement RDMA_MSGP.  Or, RFC 5666bis should remove
   RDMA_MSGP.

8.  Optional Additions To The Protocol

   These items might be beyond the scope of RFC 5666bis because the
   required protocol changes could render existing implementations non-
   interoperable, or require a protocol version increment.

8.1.  Support For GSS-API With RPC-Over-RDMA

   Section 11 of RFC 5666 introduces the concept of employing RPCSEC_GSS
   [RFC2203] with an RPC-over-RDMA transport.  However, it recommends
   using non-GSS-based security mechanisms to retain the efficiency
   benefits of RDMA transfer.

   In some deployments, the use of GSS-based Kerberos integrity or
   privacy is a fixed requirement.  One existing RPC-over-RDMA

Lever                     Expires April 8, 2016                [Page 33]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   implementation has chosen to send all integrity and privacy-protected
   RPC calls and replies via long messages.  The requirement to use long
   replies may present an interoperability problem to implementations
   that choose not to use long messages in most cases, even for GSS-
   wrapped RPC operations.

   Another implementation is exploring the possibility of offloading
   integrity and privacy computation to the RNIC.

   Further discussion and prototyping of RPC-over-RDMA with GSS-API
   [RFC2743] is needed.  It is desirable to have done this before RFC
   5666bis is complete, although it would be a large undertaking.

8.2.  Remote Invalidation

   On-the-fly memory registration must be performed when read or write
   chunks are transferred as part of an RPC request.  A registration
   cost is incurred before the RPC call is sent, and an invalidation
   cost is incurred after the RPC reply is received.

   To relieve the client of the cost of the latter, it is possible for
   the server endpoint to ask the client endpoint’s RNIC to invalidate
   the registered memory associated with an RPC, as part of sending the
   RPC reply.  When the server performs this invalidation, the client is
   no longer required to invalidate during RPC reply processing,
   avoiding the cost of that extra operation before retiring the RPC.
   We’ll refer to the server invalidating a client’s R_key as "remote
   invalidation."

   To perform remote invalidation, the server uses a Send with
   Invalidate operation instead of a plain Send operation when conveying
   an RPC reply.  A Send with Invalidate operation targets a single
   R_key that the client’s HCA is to invalidate (see [RFC5040]).  The
   server can invalidate memory regions associated with either read or
   write chunks sent by the client.

   When an RDMA SEND operation arrives at a client, the client endpoint
   receives a completion for a pending receive operation.  The
   completion indicates whether the server used a plain Send or a Send
   With Invalidate.  The completion may also indicate which R_key the
   server chose to invalidate.

8.2.1.  Hardware Support

   Not all RNICs support receiving an RDMA SEND that requests an R_key
   invalidation.  An RPC-over-RDMA client endpoint must somehow indicate
   to RPC-over-RDMA servers that Send with Invalidate may be used
   instead of Send.  Otherwise the client’s HCA would reject the Send

Lever                     Expires April 8, 2016                [Page 34]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   with Invalidate conveying the RPC reply, and the RPC (and possibly
   the transport connection) would fail.

8.2.2.  Avoiding Spurious Invalidation

   In some cases, an RPC-over-RDMA client might not wish a server to
   perform R_key invalidation, ever.  For instance, if the client uses a
   global or shared R_key to give the server access to its memory, other
   users of the R_key would be adversely affected if the R_key suddenly
   became invalid.

8.2.3.  Invalidating Multiple R_keys

   Send with Invalidate takes only a single R_key, but an RPC-over-RDMA
   client might have registered several memory regions for an RPC, each
   with its own R_key.

   For example, an RPC request may require a Read list and a Reply
   chunk.  Read chunks must be registered for read access, but a Reply
   chunk is registered to allow writes.  Thus two R_keys are required in
   this case.

   RPC-over-RDMA clients must be prepared to receive RPC replies where
   one R_key has been invalidated but others have not.

8.2.4.  Invalidation Races

   The protocol design must prevent the possibility that the server
   might invalidate an R_key that the client has recycled and is still
   actively using.

8.2.5.  Backward Compatibility

   For backward compatibility, RPC-over-RDMA servers must not use Send
   with Invalidate when an RPC-over-RDMA client endpoint is not prepared
   to sort out which memory regions have been remotely invalidated.

   For backward compatibility, RPC-over-RDMA clients must not assume
   that an RPC-over-RDMA server endpoint has performed Send with
   Invalidate.

8.2.6.  Conclusion

   It is possible that to address all of the above issues, a change must
   be made to the on-the-wire RPC-over-RDMA Version One protocol.
   However if no change is required, remote invalidation could be
   successfully introduced to the RPC-over-RDMA Version One protocol.

Lever                     Expires April 8, 2016                [Page 35]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

8.3.  Work Cancellation

   Rarely, an RPC consumer might want to cancel outstanding work.  An
   application might exit while there are pending RPC operations, for
   example, if a software fault or user-generated interrupt occurs.  Or,
   the RPC service might be slow or unresponsive, and the application
   might have placed time-limits that pre-maturely retire RPCs that take
   too long to complete.

   As a result of canceled work, the client endpoint may tear down
   registered RDMA memory regions before the server endpoint has
   performed RDMA operations on the memory.  When the server endpoint
   attempts to complete the requested work, RDMA operations will
   encounter asynchronous memory protection errors because the R_keys
   the server has are no longer valid.

   This can be fatal for the transport connection.  Any other ongoing
   work on that connection must be redriven when a new transport
   connection has been established, opening a window for RPC requests to
   be repeated on the server.

   Further, regular and repetitive cancellations of work (for example,
   an application repeatedly encountering a segmentation fault) could
   have an adverse impact on other work sharing the transport
   connection.

   One way to avoid this hazard would be to provide a way for RPC
   clients to signal to servers that an RPC reply is no longer required.
   This is not a perfect solution, as a work cancellation request can
   race with the RPC reply it is trying to cancel.

   A work cancellation request might be plumbed in as a new rdma_proc
   type.  A client would be responsible for keeping receive buffers and
   memory regions associated with an RPC until the server has responded
   to the cancellation request.

9.  Security Considerations

   There are no security considerations at this time.

10.  IANA Considerations

   This document does not require actions by IANA.

Lever                     Expires April 8, 2016                [Page 36]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

11.  Acknowledgements

   The author gratefully acknowledges the contributions of Dai Ngo,
   Karen Deitke, Chunli Zhang, Mahesh Siddheshwar, Dominique Martinet,
   and William Simpson.

   The author also wishes to thank Dave Noveck and Bill Baker for their
   unwavering support of this work.  Special thanks go to nfsv4 Working
   Group chair Spencer Shepler, nfsv4 WG Editor Tom Haynes, and to
   Transport Area Director Martin Stiemerling for their support.

12.  References

12.1.  Normative References

   [RFC1813]  Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
              Version 3 Protocol Specification", RFC 1813, DOI 10.17487/
              RFC1813, June 1995,
              <http://www.rfc-editor.org/info/rfc1813>.

   [RFC1832]  Srinivasan, R., "XDR: External Data Representation
              Standard", RFC 1832, DOI 10.17487/RFC1832, August 1995,
              <http://www.rfc-editor.org/info/rfc1832>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
              RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2203]  Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
              Specification", RFC 2203, DOI 10.17487/RFC2203, September
              1997, <http://www.rfc-editor.org/info/rfc2203>.

   [RFC2743]  Linn, J., "Generic Security Service Application Program
              Interface Version 2, Update 1", RFC 2743, DOI 10.17487/
              RFC2743, January 2000,
              <http://www.rfc-editor.org/info/rfc2743>.

   [RFC4506]  Eisler, M., Ed., "XDR: External Data Representation
              Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
              2006, <http://www.rfc-editor.org/info/rfc4506>.

   [RFC5040]  Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
              Garcia, "A Remote Direct Memory Access Protocol
              Specification", RFC 5040, DOI 10.17487/RFC5040, October
              2007, <http://www.rfc-editor.org/info/rfc5040>.

Lever                     Expires April 8, 2016                [Page 37]



Internet-Draft     RFC 5666 Implementation Experience       October 2015

   [RFC5531]  Thurlow, R., "RPC: Remote Procedure Call Protocol
              Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
              May 2009, <http://www.rfc-editor.org/info/rfc5531>.

   [RFC5661]  Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
              "Network File System (NFS) Version 4 Minor Version 1
              Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
              <http://www.rfc-editor.org/info/rfc5661>.

   [RFC5666]  Talpey, T. and B. Callaghan, "Remote Direct Memory Access
              Transport for Remote Procedure Call", RFC 5666, DOI
              10.17487/RFC5666, January 2010,
              <http://www.rfc-editor.org/info/rfc5666>.

   [RFC5667]  Talpey, T. and B. Callaghan, "Network File System (NFS)
              Direct Data Placement", RFC 5667, DOI 10.17487/RFC5667,
              January 2010, <http://www.rfc-editor.org/info/rfc5667>.

12.2.  Informative References

   [I-D.ietf-nfsv4-rpcrdma-bidirection]
              Lever, C., "Size-Limited Bi-directional Remote Procedure
              Call On Remote Direct Memory Access Transports", draft-
              ietf-nfsv4-rpcrdma-bidirection-01 (work in progress),
              September 2015.

Author’s Address

   Charles Lever
   Oracle Corporation
   1015 Granger Avenue
   Ann Arbor, MI  48104
   US

   Phone: +1 734 274 2396
   Email: chuck.lever@oracle.com

Lever                     Expires April 8, 2016                [Page 38]


