
Internet Engineering Task Force M. Campagna
Internet-Draft E. Crockett
Intended status: Experimental AWS
Expires: January 9, 2021 July 8, 2020

 Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport
 Layer Security 1.2 (TLS)
 draft-campagna-tls-bike-sike-hybrid-04

Abstract

 Hybrid key exchange refers to executing two independent key exchanges
 and feeding the two resulting shared secrets into a Pseudo Random
 Function (PRF), with the goal of deriving a secret which is as secure
 as the stronger of the two key exchanges. This document describes
 new hybrid key exchange schemes for the Transport Layer Security 1.2
 (TLS) protocol. The key exchange schemes are based on combining
 Elliptic Curve Diffie-Hellman (ECDH) with a post-quantum key
 encapsulation method (PQ KEM) using the existing TLS PRF.

Context

 This draft is experimental. It is intended to define hybrid key
 exchanges in sufficient detail to allow independent experimentations
 to interoperate. While the NIST standardization process is still a
 few years away from being complete, we know that many TLS users have
 highly sensitive workloads that would benefit from the speculative
 additional protections provided by quantum-safe key exchanges. These
 key exchanges are likely to change through the standardization
 process. Early experiments serve to understand the real-world
 performance characteristics of these quantum-safe schemes as well as
 provide speculative additional confidentiality assurances against a
 future adversary with a large-scale quantum computer.

 Comments are solicited and can be sent to all authors at
 mcampagna@amazon.com.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Campagna & Crockett Expires January 9, 2021 [Page 1]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. Key Exchange Algorithms 4
 2.1. Key Encapsulation Method (KEM) 5
 2.2. ECDHE_[KEM] . 6
 3. Hybrid Premaster Secret 6
 4. TLS Extension for Supported PQ KEM Parameters 7
 5. Data Structures and Computations 7
 5.1. Client Hello Extensions 8
 5.1.1. When these extensions are sent 8
 5.1.2. Meaning of these extensions 8
 5.1.3. Structure of these extensions 8
 5.1.4. Actions of the sender 8
 5.1.5. Actions of the receiver 8
 5.1.6. Supported PQ KEM Parameters Extension 9
 5.2. Server Key Exchange 10
 5.2.1. When this message is sent 10
 5.2.2. Meaning of this message 10
 5.2.3. Structure of this message 11
 5.2.4. Actions of the sender 12
 5.2.5. Actions of the receiver 12
 5.3. Client Key Exchange 13
 5.3.1. When this message is sent 13
 5.3.2. Meaning of the message 13

Campagna & Crockett Expires January 9, 2021 [Page 2]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 5.3.3. Structure of this message 13
 5.3.4. Actions of the sender 13
 5.3.5. Actions of the receiver 14
 5.4. Derivation of the master secret for hybrid key agreement 14
 6. Cipher Suites . 14
 7. Security Considerations [DRAFT] 16
 8. IANA Considerations . 16
 9. Acknowledgements . 16
 10. Normative References . 16
 Appendix A. Additional Stuff 18
 Authors’ Addresses . 18

1. Introduction

 Quantum-safe (or post-quantum) key exchanges are being developed in
 order to provide secure key establishment against an adversary with
 access to a quantum computer. Under such a threat model, the current
 key exchange mechanisms would be vulnerable. BIKE, Kyber and SIKE
 are post-quantum candidates which were submitted to the NIST Call for
 Proposals for Post-Quantum Cryptographic Schemes. While these
 schemes are still being analyzed as part of that process, there is
 already a need to protect the confidentiality of today’s TLS
 connections against a future adversary with a quantum computer.
 Hybrid key exchanges are designed to provide two parallel key
 exchanges: one which is classical (e.g., ECDHE) and the other which
 is quantum-safe (e.g., SIKE). The hybrid schemes we propose are at
 least as secure as ECDH against a classical adversary, and at least
 as secure as the PQ KEM against a quantum adversary. This strategy
 is emerging as a method to speculatively provide additional security
 to existing protocols.

 This document describes additions to TLS to support PQ Hybrid Key
 Exchanges, applicable to TLS Version 1.2 [RFC5246]. These additions
 are designed to support most of the second-round candidates in the
 NIST Call for Proposals, but this document only defines ciphersuites
 for a small subset of possible hybrid key agreement methods. In
 particular, it defines the use of the ECDHE together with BIKE, Kyber
 or SIKE, as a hybrid key agreement method.

 The remainder of this document is organized as follows. Section 2
 provides an overview of PQ KEM-based key exchange algorithms for TLS.
 Section 3 describes how a PQ KEM can be combined with ECDHE to form a
 premaster secret. In Section 4, we present a TLS extension that
 allow a client to negotiate the use of specific PQ schemes and
 parameters. Section 5 specifies various data structures needed for a
 BIKE-, Kyber- or SIKE-based hybrid key exchange handshake, their
 encoding in TLS messages, and the processing of those messages.
 Section 6 defines two new PQ KEM hybrid-based cipher suites and

Campagna & Crockett Expires January 9, 2021 [Page 3]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 identifies a small subset of these as recommended for all
 implementations of this specification. Section 7 discusses some
 security considerations. Section 8 describes IANA considerations for
 the name spaces created by this document. Section 9 gives
 acknowledgments.

 Implementation of this specification requires familiarity with TLS
 [RFC5246], BIKE, Kyber, and SIKE.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. Key Exchange Algorithms

 This document introduces two new hybrid-based key exchange methods
 for TLS. They use ECDHE with either BIKE, Kyber or SIKE in order to
 compute the TLS premaster secret. The master secret derivation is
 augmented to include the ClientKeyExchange message. The derivation
 of the encryption/MAC keys and initialization vectors is independent
 of the key exchange algorithm and not impacted by the introduction of
 these hybrid key exchanges. While this specification only defines
 the use of a PQ KEM hybrid key exchange with BIKE, Kyber or SIKE, it
 is specifically designed so that it can be easily extended to include
 additional PQ KEM methods.

 The table below summarizes the new hybrid key exchange schemes.

 +---------------------------------+------------------+
 | Hybrid Key Exchange Scheme Name | Description |
 +---------------------------------+------------------+
 | ECDHE_BIKE | ECDHE and BIKE. |
 | | |
 | ECDHE_KYBER | ECDHE and Kyber. |
 | | |
 | ECDHE_SIKE | ECDHE and SIKE. |
 +---------------------------------+------------------+

 Table 1: Hybrid Key Exchange Schemes

 These schemes are intended to provide quantum-safe forward secrecy.

Campagna & Crockett Expires January 9, 2021 [Page 4]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 Certificate
 ServerKeyExchange
 CertificateRequest*+
 <-------- ServerHelloDone
 Certificate*+
 ClientKeyExchange
 CertificateVerify*+
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished

 Application Data <-------> Application Data

 * message is not sent under some conditions
 + message is not sent unless client authentication
 is desired

 Figure 1: Message flow in a hybrid TLS handshake

 Figure 1 shows the messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of hybrid key exchanges
 has direct impact on the ClientHello, the ServerHello, the
 ServerKeyExchange, and the ClientKeyExchange messages. Next, we
 describe each hybrid key exchange scheme in greater detail in terms
 of the content and processing of these messages. For ease of
 exposition, we defer discussion of the optional extension for
 specifying the parameters supported by an implementation until
 Section 4.

2.1. Key Encapsulation Method (KEM)

 A key encapsulation mechanism (KEM) is a set of three algorithms

 o key generation (KeyGen)

 o encapsulation (Encaps)

 o decapsulation (Decaps)

 and a defined key space, where

 o "KeyGen()": returns a public and a secret key (pk, sk).

Campagna & Crockett Expires January 9, 2021 [Page 5]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 o "Encaps(pk)": takes pk as input and outputs ciphertext c and a key
 K from the key space.

 o "Decaps(sk, c)": takes sk and c as input, and returns a key K or
 ERROR. K is called the session key.

 The security of a KEM is discussed in Section 7. BIKE, Kyber and
 SIKE are KEMs.

2.2. ECDHE_[KEM]

 This section describes the nearly identical hybrid key exchanges
 ECDHE_BIKE, ECDHE_KYBER and ECDHE_SIKE. For the remainder of this
 section [KEM] refers to either BIKE, Kyber or SIKE. The server sends
 its ephemeral ECDH public key and an ephemeral [KEM] public key
 generated using the corresponding curve and [KEM] parameters in the
 ServerKeyExchange message. This specification requires that these
 parameters MUST be signed using a signature algorithm corresponding
 to the public key in the server’s certificate.

 The client generates an ECDHE key pair on the same curve as the
 server’s ephemeral ECDH key, and computes a ciphertext value based on
 the [KEM] public key provided by the server, and sends them in the
 ClientKeyExchange message. The client computes and holds the PQ KEM-
 encapsulated key (K) as a contribution to the premaster secret.

 Both client and server perform an ECDH operation and use the
 resultant shared secret (Z) as part of the premaster secret. The
 server computes the PQ KEM decapsulation routine to compute the
 encapsulated key (K), or to produce an error message in case the
 decapsulation fails.

3. Hybrid Premaster Secret

 This section defines the mechanism for combining the ECDHE and [KEM]
 secrets into a TLS 1.2 [RFC5246] pre-master secret. In the hybrid
 key exchange, both the server and the client compute two shared
 secrets: the previously defined ECDHE shared secret Z from RFC 8422,
 and another shared secret K from the underlying PQ key encapsulation
 method.

 Form the premaster secret for ECDHE_[KEM] hybrid key exchanges as the
 concatenation of the ECDHE shared secret Z with the KEM key K to form
 the opaque data value "premaster_secret = Z || K".

Campagna & Crockett Expires January 9, 2021 [Page 6]

Internet-Draft Hybrid Key Exchange for TLS July 2020

4. TLS Extension for Supported PQ KEM Parameters

 A new TLS extension for post-quantum key encapsulation methods is
 defined in this specification.

 This allows negotiating the use of specific PQ KEM parameter sets
 during a handshake starting a new session. The extension is
 especially relevant for constrained clients that may only support a
 limited number of PQ KEM parameter sets. They follow the general
 approach outlined in RFC 5246; message details are specified in
 Section 5. The client enumerates the BIKE, Kyber and SIKE parameters
 it supports by including the PQ KEM extension in its ClientHello
 message.

 A TLS client that proposes PQ KEM cipher suites in its ClientHello
 message SHOULD include this extension. Servers implementing a PQ KEM
 cipher suite MUST support this extension, and when a client uses this
 extension, servers MUST NOT negotiate the use of a PQ KEM parameter
 set unless they can complete the handshake while respecting the
 choice of parameters specified by the client. This eliminates the
 possibility that a negotiated hybrid handshake will be subsequently
 aborted due to a client’s inability to deal with the server’s PQ KEM
 key.

 The client MUST NOT include the PQ KEM extension in the ClientHello
 message if it does not propose any PQ KEM cipher suites.
 Additionally, the client MUST NOT include parameters in the PQ KEM
 extension for PQ KEM cipher suites it does not propose. That is, if
 a client does not support BIKE, it must not include the BIKE
 parameters in the extension, similarly for Kyber and SIKE. A client
 that proposes a PQ KEM scheme may choose not to include this
 extension. In this case, the server is free to choose any one of the
 parameter sets listed in Section 5. That section also describes the
 structure and processing of this extension in greater detail.

 In the case of session resumption, the server simply ignores the
 Supported PQ KEM Parameters extension appearing in the current
 ClientHello message. These extensions only play a role during
 handshakes negotiating a new session.

5. Data Structures and Computations

 This section specifies the data structures and computations used by
 PQ KEM hybrid-key agreement mechanisms specified in Sections 2, 3,
 and 4. The presentation language used here is the same as that used
 in TLS 1.2 [RFC5246].

Campagna & Crockett Expires January 9, 2021 [Page 7]

Internet-Draft Hybrid Key Exchange for TLS July 2020

5.1. Client Hello Extensions

 This section specifies the Supported PQ KEM Parameters extension that
 can be included with the ClientHello message as described in
 RFC 5246.

5.1.1. When these extensions are sent

 The extensions SHOULD be sent along with any ClientHello message that
 proposes the associated PQ KEM cipher suites.

5.1.2. Meaning of these extensions

 These extensions allow a client to enumerate the PQ KEM parameters
 sets it supports for any supported PQ KEM.

5.1.3. Structure of these extensions

 The general structure of TLS extensions is described in RFC 5246, and
 this specification adds a new type to ExtensionType.

 enum {
 pq_kem_parameters(0xFE01)
 } ExtensionType;

 where

 o "pq_kem_parameters" (Supported PQ KEM Parameters extension):
 Indicates the set of post-quantum KEM parameters supported by the
 client. For this extension, the opaque extension_data field
 contains PQKEMParametersExtension. See Section 5.1.6 for details.

5.1.4. Actions of the sender

 A client that proposes PQ KEM hybrid key exchange cipher suites in
 its ClientHello message appends these extensions (along with any
 others), enumerating the parameters it supports. Clients SHOULD send
 the PQ KEM parameter sets it supports if it supports PQ KEM hybrid
 key exchange cipher suites.

5.1.5. Actions of the receiver

 A server that receives a ClientHello containing this extension MUST
 use the client’s enumerated capabilities to guide its selection of an
 appropriate cipher suite. One of the proposed PQ KEM cipher suites
 must be negotiated only if the server can successfully complete the
 handshake while using the PQ KEM parameters supported by the client
 (cf. Section 5.1.6.)

Campagna & Crockett Expires January 9, 2021 [Page 8]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 If a server does not understand the Supported PQ KEM Parameters
 extension, or is unable to complete the PQ KEM handshake while
 restricting itself to the enumerated parameters, it MUST NOT
 negotiate the use of the corresponding PQ KEM cipher suite.
 Depending on what other cipher suites are proposed by the client and
 supported by the server, this may result in a fatal handshake failure
 alert due to the lack of common cipher suites.

5.1.6. Supported PQ KEM Parameters Extension

 This section defines the contents of the Supported PQ KEM Parameters
 extension. In the language of RFC 5246, the "extension_data" is the
 "PQKEMParametersExtension" type defined below.

 enum {
 BIKE1-L1-R1 (1),
 BIKE1-L3-R1 (2),
 BIKE1-L5-R1 (3),
 BIKE2-L1-R1 (4),
 BIKE2-L3-R1 (5),
 BIKE2-L5-R1 (6),
 BIKE3-L1-R1 (7),
 BIKE3-L3-R1 (8),
 BIKE3-L5-R1 (9),
 SIKE-P503-R1 (10),
 SIKE-P751-R1 (11),
 SIKE-p964-R1 (12),
 BIKE1-CCA-L1-R2 (13),
 BIKE1-CCA-L3-R2 (14),
 BIKE1-CCA-L5-R2 (15),
 BIKE2-CCA-L1-R2 (16),
 BIKE2-CCA-L3-R2 (17),
 BIKE2-CCA-L5-R2 (18),
 SIKE-P434-R2 (19),
 SIKE-P503-R2 (20),
 SIKE-P610-R2 (21),
 SIKE-P751-R2 (22),
 KYBER-512-R2 (23),
 KYBER-512-90s-R2 (24)
 } NamedPQKEM (2^16-1);

 "BIKE1-L1-R1", etc: Indicates support of the corresponding BIKE
 parameters defined in BIKE Round 1, the round 1 candidate to the NIST
 Post-Quantum Cryptography Standardization Process. (NIST PQC)

 "BIKE1-CCA-L1-R2", etc: Indicates support of the corresponding BIKE
 CCA parameters defined in BIKE Round 2, the latest revision of the

Campagna & Crockett Expires January 9, 2021 [Page 9]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 round 2 CCA candidate submitted to NIST PQC available at the time of
 this draft specification.

 "SIKE1-P503-R1", etc: Indicates support of the corresponding SIKE
 parameters defined in SIKE Round 1, the round 1 candidate to NIST
 PQC.

 "SIKE1-P434-R2", etc: Indicates support of the corresponding SIKE
 parameters defined in SIKE Round 2, the round 2 candidate to NIST
 PQC.

 "KYBER-512-R2", etc: Indicates support of the corresponding KYBER
 parameters defined in Kyber, the round 2 candidate to NIST PQC.

 struct {
 NamedPQKEM pq_kem_parameters_list <1..2^16-1>
 } PQKEMParametersExtension;

 Items in "pq_kem_parameters_list" are ordered according to the
 client’s preferences (favorite choice first).

 As an example, a client that only supports BIKE1-L1-R1 (value 1 =
 0x0001), BIKE2-L1-R1 (value 4 = 0x0004) and SIKE-P434-R2 (value 19
 = 0x0013) and prefers to use SIKE-P434-R2 would include a TLS
 extension consisting of the following octets:

 FE 01 00 08 00 06 00 13 00 01 00 04

 Note that the first two octets (FE 01) indicate the extension type
 (Supported PQ KEM Parameters extension), the next two octets
 indicates the length of the extension in bytes (00 08), and the next
 two octets indicate the length of enumerated values in bytes (00 06).

5.2. Server Key Exchange

5.2.1. When this message is sent

 This message is sent when using an ECDHE_[KEM] hybrid key exchange
 algorithms.

5.2.2. Meaning of this message

 This message is used to convey the server’s ephemeral ECDH and [KEM]
 public keys to the client.

Campagna & Crockett Expires January 9, 2021 [Page 10]

Internet-Draft Hybrid Key Exchange for TLS July 2020

5.2.3. Structure of this message

 struct {
 opaque public_key <1,...,2^24 - 1>;
 } PQKEMPublicKey;

 public_key: This is a byte string representation of the [KEM] public
 key following the conversion defined by the [KEM] implementation.

 struct {
 NamedPQKEM named_params;
 PQKEMPublicKey public;
 } ServerPQKEMParams;

 The ServerKeyExchange message is extended as follows:

 struct {
 ServerECDHParams ecdh_params;
 ServerPQKEMParams pq_kem_params;
 Signature signed_params;
 } ServerKeyExchange;

 where

 o "ecdh_params": Specifies the ECDHE public key and associated
 domain parameters.

 o "pq_kem_params": Specifies the [KEM] public key and associated
 parameters.

 o "signed_params": a signature over the server’s key exchange
 parameters. Note that only ciphersuites which include a signature
 algorithm are supported; see Section 6. The private key
 corresponding to the certified public key in the server’s
 Certificate message is used for signing.

 digitally-signed struct {
 opaque client_random[32];
 opaque server_random[32];
 ServerDHParams ecdh_params;
 ServerPQKEMParams pq_kem_params;
 } Signature;

 The parameters are hashed as part of the signing algorithm as
 follows, where H is the hash function used for generating the
 signature:

 For ECDHE_[KEM]:

Campagna & Crockett Expires January 9, 2021 [Page 11]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 "H(client_random[32] + server_random[32] + ecdh_params +
 pq_kem_params)."

 NOTE: This specification only defines hybrid ciphersuites with RSA
 and ECDSA signatures. See [RFC5246] and RFC 8422, respectively, for
 details on their use in TLS 1.2.

5.2.4. Actions of the sender

 The server selects elliptic curve domain parameters and an ephemeral
 ECDH public key corresponding to these parameters according to
 RFC 8422. The server SHOULD generate a fresh ephemeral ECDH key for
 each key exchange so that the hybrid key exchange scheme provides
 forward secrecy. The server selects a PQ KEM parameter set, and uses
 "KeyGen()" for the corresponding parameters of BIKE Round 1, BIKE
 Round 2, Kyber, SIKE Round 1, or SIKE Round 2 to generate an
 ephemeral public key pair. The server MUST generate a fresh PQ KEM
 key for each key exchange. A server that receives a Supported PQ KEM
 Parameters extension MUST use the client’s enumerated capabilities to
 guide its selection of an appropriate cipher suite. The server MUST
 NOT negotiate the use of a PQ KEM parameter set unless they can
 complete the handshake while respecting the choice of parameters
 specified by the client (cf. Section 5.1.6). If the client does not
 include the PQ KEM Parameters extension, the server is free to choose
 any one of the parameters listed in Section 5.1.6.

 If a server is unable to complete the PQ KEM handshake while
 restricting itself to the enumerated parameters, it MUST NOT
 negotiate the use of the corresponding PQ KEM cipher suite.
 Depending on what other cipher suites are proposed by the client and
 supported by the server, this may result in a fatal handshake failure
 alert due to the lack of common cipher suites.

 After selecting a ciphersuite and appropriate parameters, the server
 conveys this information to the client in the ServerKeyExchange
 message using the format defined above.

5.2.5. Actions of the receiver

 The client verifies the signature and retrieves the server’s elliptic
 curve domain parameters and ephemeral ECDH public key and the [KEM]
 parameter set and public key from the ServerKeyExchange message.

 A possible reason for a fatal handshake failure is that the client’s
 capabilities for handling elliptic curves and point formats are
 exceeded (see RFC 8422), the PQ KEM parameters are not supported (see
 Section 5.1), or the signature does not verify.

Campagna & Crockett Expires January 9, 2021 [Page 12]

Internet-Draft Hybrid Key Exchange for TLS July 2020

5.3. Client Key Exchange

5.3.1. When this message is sent

 This message is sent in all key exchange algorithms. In the key
 exchanges defined in this document, it contains the client’s
 ephemeral ECDH public key and the [KEM] ciphertext value.

5.3.2. Meaning of the message

 This message is used to convey ephemeral data relating to the key
 exchange belonging to the client (such as its ephemeral ECDH public
 key and the [KEM] ciphertext value).

5.3.3. Structure of this message

 The TLS ClientKeyExchange message is extended as follows.

 struct {
 opaque ciphertext <1,..., 2^24 - 1>;
 } PQKEMCiphertext;

 where

 o "ciphertext": This is a byte string representation of the PQ
 ciphertext of the KEM construction. Since the underlying calling
 convention of the KEM API handles the ciphertext byte string
 directly it is sufficient to pass this as single byte string array
 in the protocol.

 struct {
 ClientECDiffieHellmanPublic ecdh_public;
 PQKEMCiphertext ciphertext;
 } ClientKeyExchange;

5.3.4. Actions of the sender

 The client selects an ephemeral ECDH public key corresponding to the
 parameters it received from the server according to RFC 8422. The
 client SHOULD generate a fresh ephemeral ECDH key for each key
 exchange so that the hybrid key exchange scheme provides forward
 secrecy. Using the "Encaps(pk)" function corresponding to the PQ KEM
 and named parameters in ServerKeyExchange message, the client
 computes a [KEM] ciphertext. It conveys this information to the
 server in the ClientKeyExchange message using the format defined
 above.

Campagna & Crockett Expires January 9, 2021 [Page 13]

Internet-Draft Hybrid Key Exchange for TLS July 2020

5.3.5. Actions of the receiver

 The server retrieves the client’s ephemeral ECDH public key and the
 [KEM] ciphertext from the ClientKeyExchange message and checks that
 it is on the same elliptic curve as the server’s ECDHE key, and that
 the [KEM] ciphertexts conform to the domain parameters selected by
 the server. The server uses the "Decaps(pk)" function corresponding
 to the PQ KEM and named parameters in ServerKeyExchange message to
 compute the KEM shared secret.

 In the case of BIKE and Kyber there is a decapsulation failure rate
 no greater than 10^(-7). In the case of a decapsulation failure, an
 implementation MUST abort the handshake.

5.4. Derivation of the master secret for hybrid key agreement

 This section defines a new hybrid master secret derivation. It is
 defined under the assumption that we use the concatenated premaster
 secret defined in Section 3.1 (Section 3). Recall in this case the
 premaster_secret = Z || K, where Z it the ECDHE shared secret, and K
 is the KEM shared secret.

 We define the master secret as follows:

 master_secret[48] = TLS-PRF(secret, label, seed)

 where

 o "secret": the premaster_secret,

 o "label": the string "hybrid master secret", and

 o "seed": the concatenation of "ClientHello.random ||
 ServerHello.random || ClientKeyExchange"

6. Cipher Suites

 The table below defines new hybrid key exchange cipher suites that
 use the key exchange algorithms specified in Section 2 (Section 2).

Campagna & Crockett Expires January 9, 2021 [Page 14]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 +--+
 | Ciphersuite |
 +--+
 | TLS_ECDHE_BIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x01 } |
 | |
 | TLS_ECDHE_BIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x02 } |
 | |
 | TLS_ECDHE_BIKE_RSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x03 } |
 | |
 | TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x04 } |
 | |
 | TLS_ECDHE_SIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x05 } |
 | |
 | TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x06 } |
 | |
 | TLS_ECDHE_SIKE_RSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x07 } |
 | |
 | TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x08 } |
 | |
 | TLS_ECDHE_KYBER_ECDSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x09 } |
 | |
 | TLS_ECDHE_KYBER_ECDSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x0A } |
 | |
 | TLS_ECDHE_KYBER_RSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x0B } |
 | |
 | TLS_ECDHE_KYBER_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x0C } |
 +--+

 Table 2: TLS hybrid key exchange cipher suites

 The key exchange method, signature algorithm, cipher, and hash
 algorithm for each of these cipher suites are easily determined by
 examining the name. Ciphers and hash algorithms are defined in
 RFC 5288.

 It is recommended that any implementation of this specification
 include both of the following ciphersuites:

 o TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x04 }

 o TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x08 }

 using the parameters BIKE1-CCA-L1-R2 and SIKE-P434-R2.

Campagna & Crockett Expires January 9, 2021 [Page 15]

Internet-Draft Hybrid Key Exchange for TLS July 2020

7. Security Considerations [DRAFT]

 The security considerations in TLS 1.2 [RFC5246] and RFC 8422 apply
 to this document as well. In addition, as described in RFC 5288 and
 RFC 5289, these cipher suites may only be used with TLS 1.2 or
 greater.

 The description of a KEM is provided in Section 2.1. The security of
 the KEM is defined through the indistinguishability against a chosen-
 plaintext (IND-CPA) and against a chosen-ciphertext (IND-CCA)
 adversary. We are focused here on the IND-CPA security of the KEM.
 As a result, implementations MUST NOT use a KEM key more than once,
 as reusing keys with IND-CPA KEMs can result in chosen ciphertext
 attacks like the GJS attack against BIKE [GJS].

 In the IND-CPA experiment of KEMs, an oracle generates keys (sk, pk)
 with "KeyGen()", computes (c, K) with "Encaps(pk)", and draws
 uniformly at random a value R from the key space, and a random bit b.
 The adversary is an algorithm A that is given (pk, c, K) if b=1, and
 (pk, c, R) if b=0. Algorithm A outputs a bit b’ as a guess for b,
 and wins if b’ = b.

 All of the ciphersuites described in this document are intended to
 provide forward secrecy. The hybrid key exchange mechanism described
 in this specification achieves forward secrecy when all ephemeral
 keys are single-use. This specification requires single-use PQ KEM
 keys, so ephemeral ECDH keys SHOULD also be single-use so that
 forward secrecy is achieved.

8. IANA Considerations

 This document describes three new name spaces for use with the TLS
 protocol:

9. Acknowledgements

 This specification is based on ideas discussed with Ian Goldberg,
 Michele Mosca, Douglas Stebila and William Whyte during preparations
 for the first ETSI-IQC Quantum Safe Cryptography Workshop in 2013.
 The specification was developed through collaboration on the open
 source s2n project with Nicholas Allen, Nir Drucker, Shay Gueron,
 Andrew Hopkins, Colm MacCarthaigh and Alex Weibel.

10. Normative References

Campagna & Crockett Expires January 9, 2021 [Page 16]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 [BIKEr1] Misoczki, R., Aragon, N., Barreto, P., Bettaieb, S.,
 Bidoux, L., Blazy, O., Deneuville, J., Gaborit, P.,
 Gueron, S., Guneysu, T., Melchor, C., Persichetti, E.,
 Sendrier, N., Tillich, J., and G. Zemor, "BIKE: Bit
 Flipping Key Encapsulation", November 2017,
 <http://http://bikesuite.org/files/BIKE.pdf>.

 [BIKEr2] Misoczki, R., Aragon, N., Barreto, P., Bettaieb, S.,
 Bidoux, L., Blazy, O., Deneuville, J., Gaborit, P.,
 Gueron, S., Guneysu, T., Melchor, C., Persichetti, E.,
 Sendrier, N., Tillich, J., Vasseur, V., and G. Zemor,
 "BIKE: Bit Flipping Key Encapsulation, version 3.2",
 February 2020, <https://bikesuite.org/files/round2/spec/
 BIKE-Spec-2020.02.07.1.pdf>.

 [GJS] Guo, Q., Johansson, T., and P. Stankovski, "A Key Recovery
 Attack on MDPC with CCA Security Using Decoding Failures",
 2016, <https://eprint.iacr.org/2016/858.pdf>.

 [KYBERr2] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T.,
 Lyubashevsky, V., Schanck, J., Schwabe, P., Seiler, G.,
 and D. Stehle, "CRYSTALS-Kyber", March 2019,
 <https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
 Cryptography/documents/round-2/submissions/CRYSTALS-Kyber-
 Round2.zip>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 DOI 10.17487/RFC5288, August 2008,
 <https://www.rfc-editor.org/info/rfc5288>.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

Campagna & Crockett Expires January 9, 2021 [Page 17]

Internet-Draft Hybrid Key Exchange for TLS July 2020

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [SIKEr1] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De
 Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B.,
 Longa, P., Naehrig, M., Renes, J., Soukharev, V., and D.
 Urbanik, "Supersingular Isogeny Key Encapsulation",
 November 2017, <https://csrc.nist.gov/CSRC/media/Projects/
 Post-Quantum-Cryptography/documents/round-1/submissions/
 SIKE.zip>.

 [SIKEr2] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De
 Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B.,
 Longa, P., Naehrig, M., Pereira, G., Renes, J., Soukharev,
 V., and D. Urbanik, "Supersingular Isogeny Key
 Encapsulation", April 2019,
 <https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
 Cryptography/documents/round-2/submissions/SIKE-
 Round2.zip>.

Appendix A. Additional Stuff

 This becomes an Appendix.

Authors’ Addresses

 Matt Campagna
 AWS

 Email: campagna@amazon.com

 Eric Crockett
 AWS

 Email: ericcro@amazon.com

Campagna & Crockett Expires January 9, 2021 [Page 18]

