MPTCP Wor ki ng Group S. Barre

Internet-Draft G Det al
| ntended status: |nformational Tessar es
Expires: May 31, 2018 O. Bonaventure
UCLouvai n and Tessares

C. Paasch

Appl e

Novenber 27, 2017

TFO support for Miltipath TCP
draft-barre-nptcp-tfo-02

Abst ract

TCP Fast Open (TFO is a TCP extension that allows sending data in
the SYN, instead of waiting until the TCP connection is established.
Thi s docunent describes what parts of Multipath TCP nmust be adapted
to support it, and how TFO and MPTCP can operate together.

Status of This Menp

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (I ETF). Note that other groups may al so distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi mum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on May 31, 2018.
Copyri ght Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis document nust

Barre, et al. Expires May 31, 2018 [Page 1]

I nternet-Draft MPTCP TFO support November 2017

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
2. TFO cooki e request Mﬁth NPTCP 3
3. Data sequence mappi ng under TFO . 4
4. Early context creation in server . . 4
5. Using TFO to avoid usel ess MPTCP negot|at|ons . 5
6. Using TFOwith MPJON . . G 6
7. Connection establishment exanples . 6
8. M ddl ebox interactions 8
9. Security considerations . C e e e e 9
10. Conclusion . . e K¢
11. Acknomﬂedgenents e 1 0
12. Informative References . . e ¢
Appendi x A. I nplenmentation status e K¢
Authors’ Addresses 12
1. Introduction

TCP Fast Open, described in [RFC7413], has been introduced with the
obj ective of gaining one RTT before transmtting data. This is

consi dered a val uable gain as very short connections are very conmmon,
especially for HITP request/response schenes. MPTCP, on the other
hand, has been defined in [I-D.ietf-nptcp-rfc6824bis] to add
mul ti path support to TCP, where a TCP flow is divided in several TCP
subflows. Gven that MPTCP can be applied transparently to any TCP
socket, without the application knowing, it should be able to support
TCP fast open when the application asks for it.

When doing that, one inportant thing to examne is the option |length
consumed in segnents that would carry both a TFO and an MPTCP opti on
The handl i ng of MPTCP data sequence mappi ngs nust al so be updated to
take into account the data that is sent together with the SYN or the
SYNHACK. A third issue to handle is the state creation in the
server: TFO allows the server to create TCP state as soon as a SYNis
received. Wth MPTCP, even nore state is created, and it may be
useful to avoid this in a situati on where MPTCP does not work but TFO
does.

The rest of this docunment is organized as foll ows:
Section 2 describes the TFO cookie request, in the case of a

Mul tipath TCP flow. Section 3 proposes a way to nmap SYN data to the
dat a sequence nunber space, while taking m ddl eboxes into account.

Barre, et al. Expires May 31, 2018 [Page 2]

I nternet-Draft MPTCP TFO support November 2017

In Section 4, it is explained that the MP_CAPABLE option is no | onger
al ways necessary in the third ack of the three-way handshake.

Section 5 presents two ways to avoi d usel ess MPTCP context creations
in the server, one for client inplenmentations, the other for server

i mpl enent ati ons, as a TFO extension. Section 6 takes the MP_JAO N
case into consideration. Finally, we describe m ddl ebox interactions
in Section 8, and security considerations in Section 9.

2. TFO cooki e request with MPTCP

VWen a TFO client first connects to a server, it cannot imediately
include data in the SYN for security reasons [RFC7413]. Instead, it
requests a cookie that will be used in subsequent connections. This
is done with the TCP cooki e request/response options, of resp. 2
bytes and 6-18 bytes (depending on the chosen cookie |ength).

TFO and MPTCP can be conbi ned provided that the total Iength of their
options does not exceed the maxi mum 40 bytes possible in TCP

o In the SYN. MPTCP uses a 4-bytes |ong MP_CAPABLE option. The
MPTCP and TFO options sumup to 6 bytes.
[I-D.ietf-nptcp-rfc6824bis] nentions in Appendi x A that SYN packet
options typically sumup to 19 bytes, or 24 bytes where
i npl enent ati ons pad each option up to a word boundary. Even in
the worst case, this fits the nmaxi mum option space.

0 |In the SYNWNACK: MPTCP uses a 12-bytes | ong MP_CAPABLE option, but
now TFO can be as long as 18 bytes. Since the nmaximum option
l ength may be exceeded, it is up to the server to solve this by
using a shorter cookie or pad the whole option bl ock instead of
each option separately. Alternatively, the server nay decide to
fall back to MPTCP-only (by not giving a cookie at all), or to TFO
only. As an example, if we consider that 19 bytes are used for
cl assical TCP options, the maxi mum possi bl e cookie | ength woul d be
of 7 bytes. The consequence of this, froma security viewpoint,
is explored in Section 9. Note that the sanme limtation applies
to subsequent connections, for the SYN packet (because the client
then echoes back the cookie to the server). Finally, if the
security inmpact of reducing the cookie size is not deened
acceptabl e, the server can reduce the ampunt of other TCP-options
by omitting the TCP tinmestanps. Indeed, as outlined in
[I-D.ietf-nptcp-rfc6824bis] in Appendix A, an MPTCP connection
could also avoid the use of TCP tinestanps thanks to MPTCP' s use
of 64-bit sequence nunmbers which already provides protection
agai nst wrapped sequence numnbers.

o In the third ACK: Nothing special conmpared to MPTCP, since no TFO
option is used there.

Barre, et al. Expires May 31, 2018 [Page 3]

I nternet-Draft MPTCP TFO support November 2017

Once the cooki e has been successfully exchanged, the rest of the
connection is just regular MPTCP. The rest of this document assunes
that the cookie request has been exchanged, and that data can be

i ncluded in the SYN

3. Data sequence mappi ng under TFO

MPTCP [I-D.ietf-nmptcp-rfc6824bis] uses, in the TCP establishnent
phase, a key exchange that is used to generate the Initial Data
Sequence Numbers (I DSNs). Mbre precisely,
[I-D.ietf-nptcp-rfc6824bis] states in section 3.1 that "The SYN with
MP_CAPABLE occupies the first octet of data sequence space, although
this does not need to be acknow edged at the connection |evel unti
the first data is sent". Wth TFO one way to handl e the data sent
together with the SYN would be to consider an inplicit DSS mappi ng
that covers that SYN segnent (since there is not enough space in the
SYN to include a DSS option). The problemw th that approach is that
if a mddl ebox nodifies the TFO data, this will not be noticed by
MPTCP because of the absence of a DSS-checksum For exanple, a TCP
(but not MPTCP)-aware m ddl ebox could insert bytes at the beginning
of the stream and adapt the TCP checksum and sequence nunbers
accordingly. Wth an inplicit mapping, this would give to client and
server a different view on the DSS-mapping, with no way to detect
this inconsistency as the DSS checksumis not present. One way to
solve this is to sinply consider that the TFO data is not part of the
Dat a Sequence Nunmber space: the SYN with MP_CAPABLE still occupies
the first octet of data sequence space, but then the first non-TFO
data byte occupies the second octet. This guarantees that, if the
use of DSS-checksumis negotiated, all data in the data sequence
nunber space is checksumed. W also note that this does not entai

a loss of functionality, because TFO-data is always sent when only
one path is active.

4. Early context creation in server

In order to enable the server to receive and send data before the end
of the three-way handshake, TFO all ows creating state on the server
as soon as the SYNis received if a valid cookie is provided. The
MPTCP state should then al so be created upon SYN reception (see
exceptions for that in Section 5).

DI SCUSSI ON: Doi ng that allows rel axi ng the MPTCP MP_CAPABLE exchange,
in that the sender’s and receiver’s keys are no longer required in
the third ack of the three-way handshake, because their role was
precisely to conpensate for the absence of server state until the end
of the establishment. The consequence is that the MP_CAPABLE option
can sinmply be renoved fromthe third ack. However, an MPTCP option
nmust still be present when concl uding the three-way handshake, to

Barre, et al. Expires May 31, 2018 [Page 4]

I nternet-Draft MPTCP TFO support November 2017

confirmto the server that its own MP_CAPABLE option (in the SYN+ACK)
has been correctly received by the client. The DSS option can

repl ace the MP_CAPABLE option, while sinultaneously allow ng the
transm ssion of nore data in the third ack. Mreover, providing a
DSS option to the server early allows faster establishnment of new
subflows (see [I-D.ietf-nptcp-rfc6824bis], Section 3.1).

In order to decide whether it can send a third ack with DSS-only

i nstead of MP_CAPABLE, a client nust verify if the TFO data has been
at least partially acknow edged. |f the SYN+ACK only acknow edges
the SYN, TFO may be not supported in the server, or the cookie may
have been filtered by the network. There is no guarantee that the
MPTCP state has been created, and the third ack should contain the
MP_CAPABLE option, with the client and server keys.

5. Using TFO to avoid usel ess MPTCP negoti ati ons

The TFO cookie, sent in a SYN, indicates that a previ ous connection
has been successfully established, and that TCP state can safely be
created. It does not however say anything about whether the MPTCP
options are filtered or not in the network. It is thus possible that
a server creates an MPTCP context upon SYN+TFO cooki e reception, then
actually needs to discard it after having discovered that the MPTCP
options are filtered.

One way to solve this would be for the client to cache destinations
that do support MPTCP. TFO all ows sending data together with the SYN
starting at the second connection. The first one is used to |earn
the cookie fromthe server. It could also be used to | earn whether
MPTCP can be used with the peer

DI SCUSSI ON: The ot her, conpatible way to solve the problemis to
extend TFO and cache the Multipath Capability in the cookie generated
by the server. The server could nodify its cookie conputation, to
include nmultipath capability information in the cookie. Then, upon
SYN+TFO cooki e reception, the server could easily determne if the
initial TFO fl ow was a successful MPTCP connection or not. The
problemw th this approach is that the server does not know yet
whet her the flow is multipath-capabl e when sending the TFO cooki e.
It could then send a first pessinmistic cookie, as

Get Cooki e(1 P_Address, np_capabl e=fal se) (adapted from [RFC7413],
Section 4.1.2). Then, when it is determned that the flowis

Mul tipath Capable (third ack received with an MPTCP option), a new
cooki e=Get Cooki e(| P_Address, np_capabl e=true) can be generated and
sent in the FIN to ensure reliable delivery.

Barre, et al. Expires May 31, 2018 [Page 5]

I nternet-Draft MPTCP TFO support November 2017

6.

Using TFO with MP_JO N

TFO nmust not be used when establishing joined subflows. Doing that
woul d be in contradiction with [I-D.ietf-nptcp-rfc6824bis], that
states in section 3.2 that "It is not permtted to send data while in
the PRE_ESTABLI SHED state". Using TFOwi th joined subflows would
nean that data is sent even before getting to the PRE ESTABLI SHED
state.

Connection establishnent exanpl es

In this section we show a few exanpl es of possible TFO-MPTCP
establ i shnent scenarios. For representing segnents, we use the
Tcpdunmp synt ax.

Before a client can send data together with the SYN, it nust request
a cookie to the server, as shown in Figure 1. This is done by sinmply
conbi ning the TFO and MPTCP opti ons.

client server

I
| S 0(0) <MP_CAPABLE>, <TFO cooki e request>

Fi gure 1: Cookie request

Once this is done, the received cookie can be used for TFO as shown
in Figure 2. The MP_CAPABLE is no longer required for the third ack
as explained in Section 4. Note that the last segment in the figure
has a TCP sequence number of 21, while the DSS subfl ow sequence
nunber is 1 (because the TFO data is not part of the data sequence
nunber space, as explained in Section 3.

Barre, et al. Expires May 31, 2018 [Page 6]

I nternet-Draft MPTCP TFO support November 2017

client server

| |

| S 0(20) <MP_CAPABLE>, <TFO cooki e>

| > |
|
|

|
| S. 0(0) ack 21 <WP_CAPABLE>
A |
| . 1(100) ack 21 <DSS ack=1 seg=1 ssn=1 dl en=100>
T |
| . 21(20) ack 101 <DSS ack=101 seg=1 ssn=1 dl en=20>
| > |
|

Figure 2: The server supports TFO

In Figure 3, the server does not support TFO The client detects
that no state is created in the server (as no data is acked), and now
sends the MP_CAPABLE in the third ack, in order for the server to
build its MPTCP context at then end of the establishnent. Now, the
tfo data, retransmtted, becones part of the data sequence mappi ng
because it is effectively sent (in fact re-sent) after the
establ i shment.

client server

| |
| S 0(20) <MP_CAPABLE>, <TFO cooki e> |
| o > |
|
|

|

| S. 0(0) ack 1 <wMP_CAPABLE>
T |
| 21(0) ack 1 <WMP_CAPABLE> |
| |
| . 1(20) ack 1 <DSS ack=1 seq=1 ssn=1 dl en=20>
R |
| 0(0) ack 21 <DSS ack=21 seg=1 ssn=1 dl en=0>
| |

Figure 3: The server does not support TFO

It is also possible that the server acknow edges only part of the TFO
data, as illustrated in Figure 4.

Barre, et al. Expires May 31, 2018 [Page 7]

I nternet-Draft MPTCP TFO support November 2017

8.

client server
| |
| S 0(1000) <MP_CAPABLE>, <TFO cooki e>
I e e >

|
|
| T |
|
|

|
|
B L CECREE P PR R PR PP PE PR > |
| |

Figure 4: Partial data acknow edgenent
M ddl ebox interactions

[I-D.ietf-nptcp-rfc6824bis], Section 6, describes m ddl ebox
interactions for Miultipath TCP. This docunment does not define any
new option conpared to MPTCP or TFO. It defines a conbination of
t hem

TFO al so defines how an i npl ementati on should react when the TFO SYN
is lost (fallback to regular TCP, [RFC7413] Section 4.2.1).

We propose to renove the MP_CAPABLE option fromthe third ack when
TFO i s used, based on the assunption that the context has been
created already in the server upon SYN reception. Should the server
actually not create this state, it would not be able to create its
MPTCP state and woul d fallback to regular TCP. The state is not
created in the server if it has no TFO support or the cookie is
invalid, but in that case only the SYN is acknow edged, and the
client does send the MP_CAPABLE option

The ot her case where the server does not create MPTCP state is when
the cookie includes a "np_capabl e=fal se" information. In that case,
regular TCP is used to take into account m ddl eboxes that prevent
correct MPTCP operation.

Even t hough this docunent presents mechani snms for coll aboration

bet ween MPTCP and TFQO, the filtering of one will not stop the other
fromworking. For exanple, if a TFO option is dropped, MPTCP wi |l
fall back to sending MP_CAPABLE in third_ack, because no TFO data is
acked. If the server stores MPTCP information in the cookie, this
will be completely opaque to the network, and even to the client.
Shoul d that cookie be transforned or lost, it would not be accepted
anynore by the server, which would fallback to regular MPTCP

Barre, et al. Expires May 31, 2018 [Page 8]

I nternet-Draft MPTCP TFO support November 2017

conmuni cation, or regular TCP if MPTCP options are also filtered or
nodi fi ed.

The probl em of m ddl eboxes that alter the TFO data is solved by the
fact that TFO data is not part of the Data Sequence Number space, as
expl ained in Section 3.

9. Security considerations

Conpared to using TFO or MPTCP al one, inplenenting the present
combination could lead to nore state created in the server, since
MPTCP now creates state as soon as the first SYNis received. This
i s however not considered as a problem for the follow ng reasons:

o The server will only create state when a valid TFO cookie is
received. This guarantees that a successful TCP connection has
been previously established with the sane peer

o It remmins possible that a usel ess MPTCP context is created upon
SYN reception (due to TFO support but MPTCP options being filtered
by the network). This is nore an optim zation issue than a
security issue given the TFO cookie protection already present.
Section 5 still proposes a solution to avoid creating MPTCP state
in that case

o Wien under nenory pressure, a server always has the option to
refuse the client cookie. In that case, the session establishnment
wi Il happen w thout data, and the client will send the MP_CAPABLE
option in the third ack so that the server can create the MPTCP
context at that tine.

As nentioned in Section 2, it may be required to reduce the |l ength of
the cooki e when MPTCP and TFO are used together. This can becone a
security issue when attackers and networks becorme fast enough for a
brute force attack to be successful. An option to solve this would
be to use TCP payload to store additional options, as suggested in
[I-D.ietf-nptcp-rfc6824bis], Section 5. Another way would be to
al l ow | onger TCP options by using an "Extended Data Offset Option"
[I-D.touch-tcpmtcp-edo]. The problemwith this is that the nost
probl ematic segnent in the present case is the SYN (with | ong TFO
cooki e and MP_CAPABLE MPTCP option), for which it is nmore difficult
to apply the Extended Data Offset Option ([I|-D.touch-tcpmtcp-edo],
Section 7.7).

Barre, et al. Expires May 31, 2018 [Page 9]

I nternet-Draft MPTCP TFO support November 2017

10. Concl usi on

In this docunment, we have proposed mi nor extensions to MPTCP and TFO
to allow themto operate together. In particular, we proposed
excluding the TFO data fromthe data sequence nunber space. W

expl ained that TFO allows to relax the MPTCP establishnent in that
the MP_CAPABLE option of the third ack can be renpbved in sone cases.
W al so enphasi zed that such a conbi nati on augnents the size of the
TCP options, already quite | arge, although the conbination is stil
possi ble with common TCP options and linited cookie |l ength. W also
proposed a way to cache multipath capability information in the
client or in the TFO cookie. Finally, we exam ned potentia

m ddl ebox interaction problens, or security problens that would arise
fromthat conbi ned operation

11. Acknow edgenents

This work was supported by the FP7-Tril ogy2 project and by the
Bel gi an Wal | oon Regi on under its FIRST Spin-Of Program (Rl CE
proj ect).

12. I nformati ve References

[I-D.ietf-nptcp-rfc6824bis]
Ford, A, Raiciu, C, Handley, M, Bonaventure, O, and C
Paasch, "TCP Extensions for Miltipath Operation with
Mul tiple Addresses", draft-ietf-nptcp-rfc6824bis-09 (work
in progress), July 2017.

[1-D.touch-tcpmtcp-edo]
Touch, J. and W Eddy, "TCP Extended Data O fset Option",
draft-touch-tcpmtcp-edo-03 (work in progress), July 2014.

[Mul ti pat hTCP- Li nux]
Paasch, C., Barre, S., and . et al, "Multipath TCP in the
Li nux kernel", n.d., <http://ww. nultipath-tcp.org>.

[RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A Jain, "TCP
Fast Open", RFC 7413, DA 10.17487/ RFC7413, Decenber 2014,
<https://ww.rfc-editor.org/info/rfc7413>

Appendi x A. I nplenentation status
In this section, we present the report of the inplenentation of this
draft inside the Linux reference inplenentation of Miltipath TCP

[Mul ti pat hTCP-Li nux]. The support of TFO in the MPTCP stack has been
i mpl enented on the 3.14 kernel (MPTCP vO0.89).

Barre, et al. Expires May 31, 2018 [Page 10]

I nternet-Draft MPTCP TFO support November 2017

The main design choices of this inplenentation are the foll ow ng:

0 Mnimze the nodification to the current MPTCP and TFO st acks,
i.e. let the TFO stack deal with sending data, receiving data
i nsi de the SYN

0o Create the MPTCP state when receiving a SYNwith a valid token on
the server side as defined in Section 4.

o Map the remmining data segnents in the receive and send buffers to
MPTCP dat a sequence nunbers.

This latter point needs further explanation. First, in the current
reference inplenentati on of MPTCP, the MPTCP state is created upon
reception of the SYN+ACK on the client-side. The inplenentation
however did the MPTCP state allocation before processing the actua
acknow edgenent at the subflow level. This neans that data (even
acknow edged by the SYN+ACK) remmins in the send buffer at the tine
of the allocation (which contained only the SYNin the case of
regular MPTCP). W nodified this behaviour to ensure that only
unacknow edged data remains in the send buffer when allocating the
state. Moreover, as the data was initially sent over the regular TCP
flow, they had no MPTCP sequence nunbers (the MPTCP state did not
exist during the initial sendto() call). After the allocation of the
MPTCP state, we nodify these sequence nunbers such that they are
mapped starting at "IDSN + 1". This effectively gives the data
sequence number "IDSN + 1" to the first byte follow ng the

est abl i shenent, since the acknow edged TFO data has been renoved
front the queues at this point. This data will then follow the sane
path as for data sent via a regular wite() call

As is the case for unacknow edged data on the client-side, the
server-side can al so have data in the receive buffer (the data sent
inthe SYN. W performthe sane operation by mapping this data from
TCP to MPTCP sequence nunbers. TFO data is then mapped ahead of the
IDSN, so as to ensure, again, that the first byte follow ng the

est abl i shnent has the data sequence nunber "IDSN + 1".

As of this witing, the inplenentation still generates a regul ar
third acknow edgnent with a MP_CAPABLE option (see Section 4) and it
does not take benefit fromthe TFO cache to avoi d usel ess MPTCP
negoti ati on (see Section 5).

Aut hors’ Addr esses

Barre, et al. Expires May 31, 2018 [Page 11]

I nternet-Draft MPTCP TFO support November 2017

Sebastien Barre

Tessares

Emai | : sebasti en. barre@ essar es. net
Gregory Detal

Tessares

Emai | : gregory. det al @essares. net

divier Bonaventure
UCLouvai n and Tessares

Email : A ivier.Bonavent ure@ essar es. net
Chri st oph Paasch

Appl e

Emai | : cpaasch@ppl e. com

Barre, et al. Expires May 31, 2018 [Page 12]

